LilyPond

The music typesetter

Notation Reference

The LilyPond development team
Copyright (©) 1999-2009 by the authors

Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.1 or any later version
published by the Free Software Foundation; with no Invariant Sections. A copy of
the license is included in the section entitled “GNU Free Documentation License”.

For LilyPond version 2.12.3

Table of Contents

1 Musical notation............ 1
1.l PItChes . oo 1
111 Writing pitches 1
ADSOIULE OCEAVE EIIETY .\ttt ettt ettt e e e e 1
Relative octave entry 2
Accidentals. o 4
Note names in other languages. ... 6
1.1.2 Changing multiple pitches 7
Octave checks 7

B 5720 T 0 Yo =T 8
1.1.3 Displaying pitches 11
Gt o o 11
Key signature 14
Ottava brackets i 16
Instrument transpositions e 17
Automatic accidentalS. 18
A US oo 24
1.1.4 Note heads 26
Special note heads. ... i 26
Easy notation note heads....... 27
Shape note heads. 27
Improvisation e 29
1.2 Rhythmis . ..o 29
1.2.1 Writing rhythms. 30
DU atIoNS . . . oo 30
UPIetS 31
Scaling durations.t e 34

B G P 35
1.2.2 WIIBINE TeStS « oottt ettt e e 37
RSt 37
Invisible TeStS . .. 39
Full measure rests 40
1.2.3 Displaying rhythms. 43
Time SIgNAatUTEo e 43
Upbeats . o 46
Unmetered mMUSIC. e 47
Polymetric notation 48
Automatic note SplttIngo 51
Showing melody rhythms....... ... 51
1.2.4 Beams. ..o 54
Automatic beams 54
Setting automatic beam behavior........ 56
Manual Deamso 65
Feathered beams i 67

1. 2.0 BarS. .o 67
Bar Ines . ..o 68
Bar numbers 70

Bar and bar number checks. 73

Rehearsal marks.o. 74
1.2.6 Special rhythmic concerns 75
GTACE TIOTES - . vttt e et ettt e e e e e 75
Aligning t0 CAAENZASttt 79
Time administration. ... 80
1.3 EXPressive marks e 81
1.3.1 Attached t0 NOtESt e 81
Articulations and ornamentations. 81
Dynamicso e 83
New dynamic marks. e 87
1.3, CUIVES o ottt et e e e e e 89
LU o oottt 89
Phrasing slurso 90
Breath marks 91
Falls and doits 92
1.3.3 LMeS . oot 93
GHSSANAO . et 93
AT DOEIO . o ot 94

0 P 97
L4 REPEAES . ot 98
141 LoD TEPEALS -« oottt e 99
Normal TePeats.ttt 99
Manual repeat marks. e 102
Written-out repeatso e 104
1.4.2 Short repeats. ..ot e 104
Percent repeats 105
Tremolo repeats. 106
1.5 SImultaneous NOteS. e 107
1.5.1 Single VOICE . ..o 107
Chorded NOTES 108
SIiMultaneous eXPresSSIONSttt ettt et 108
ST ottt 109
1.5.2 Multiple VOICESot 109
Single-staff polyphony 109
V0ICE SEYLES .« .o 112
ColliSion TesOIUtION\ttt e 112
Automatic part combining. ... 116
Writing music in parallel 119
1.6 Staff notation 121
1.6.1 Displaying staves 122
Instantiating new staves............ 122
GIrOUPING SEAVES . . .« ettt ettt e e e e 123
Nested stafl groups. 127
1.6.2 Modifying single staveso 128
Staff symbolo 128
OSSIA STAVES .+« vttt ettt e e 130
Hiding staves.o 134
1.6.3 WIItIng parts. . ..ottt e 137
Metronome MarKs 137
Instrument names 140
QUOtING Other VOICESt 143
Formatting cue notes. ... 146
1.7 Editorial annotations. i 148

1.7.1 Imside the stafl 149

Selecting notation font Size.......... ... e 149
Fingering instructions 150
Hidden notes. 152
Coloring ObJeCtS. ..\ttt 153
Parentheses 154
SIS o e ettt e e 155
1.7.2 Outside the stafl 155
Balloon help 155
Grid es . oot 156
Analysis brackets.o 158
18 Xt ottt 159
1.8.1 Writing text. . oot 160
Xt SCT DS « o vttt 160
Text SPANNETS . . .o oottt 161
Text markso 162
Separate texXt 165
1.8.2 Formatting text 167
Text markup introduction i 167
Selecting font and font size...... ... 168
Text alignmento 170
Graphic notation inside markup 174
Music notation inside markup ... 176
Multi-page markup e 179
18,3 BHOmts. oo 179
Fonts explained 180
Single entry fonts 181
Entire document fonts. 182

2 Specialist notation......... ... 183
2.1 VoCal TNUSIC . .« v v e e 183
2.1.1 Common notation for vocal music i i 183
References for vocal music and Lyrics ... 183

(0] 01 P 183
SONE DOOKS . .ottt 183
SPOKEN TIUSIC -« .o e et e 184
CRAntS . 184
Ancient vocal TNUSICot 184
2.1.2 Entering Lyrics 184
Lyrics explained. o 184
Setting SiMpPle SOMES . .« oottt e 186
Working with lyrics and variables......... 186
2.1.3 Aligning lyrics to a melody 187
Automatic syllable durationsc. ..o 187
Manual syllable durations e 188
Multiple syllables to one note.c.o i 189
Multiple notes to one syllable. 190
SKIPPING NOTES . . .ottt ettt e e e e e e 191
Extenders and hyphens. 191
Lyrics and repeats 191
2.1.4 Specific uses of Iyrics 192
DAVIST LYTICS « . v e et 192
Lyrics independent of notes ... 193
Spacing out syllables 193

Centering lyrics between staves. 195

2. 1.5 SBANZAS « .« o vttt 195
Adding stanza NUMDETSot 195
Adding dynamics marks to stanzasc.. i i 195
Adding singers’ names t0 StANZASttt 196
Stanzas with different rhythms 196
Printing stanzas at the end....... 197
Printing stanzas at the end in multiple columns................ 198

2.2 Keyboard and other multi-staff instruments............ 200

2.2.1 Common notation for keyboards.......... 200
References for keyboardso i 200
Changing staff manually........ ... 201
Changing staff automatically i 202
Staff-change lines. 204
Cross-stafl stems 204

2.2.2 PIano 206
Piano pedalso 206

2.2.3 AcCCOTdiON . ..o 207
Discant symbols. 207

2.2. 4 HaTD oottt 211
References for harps. ... 211
Harp pedals. ... 211

2.3 Unfretted string inStrumentso i 212

2.3.1 Common notation for unfretted strings L. 212
References for unfretted strings......... ..o 212
Bowing indications i 213
Harmonics 213
Snap (Bartok) pizzicatoo.ouiuiu i 214

2.4 Fretted string instruments. 215

2.4.1 Common notation for fretted strings............ ... i 215
References for fretted Strings ... 215
String number indications 216
Default tablatures. e 217
Custom tablatures 220
Fret diagram markups. o 221
Predefined fret diagrams 230
Automatic fret diagrams 237
Right-hand fingeringso i 240

2.4.2 GUItAT ... 241
Indicating position and barring.............. . 241
Indicating harmonics and dampened notes............... ..., 242

2,43 Ban o ... 242
Banjo tablatures 242

2.5 PerCUSSION . ..ottt 243

2.5.1 Common notation for percussion.c..oiiiiiiiiiiiiiii i 243
References for perCusSSIOnt 243
Basic percussion notation 243
Drum rolls . ..o 244
Pitched percussion i 244
Percussion staves. 245
Custom PErcuUSSION STAVES . ..ottt ettt ettt et e e e et e e 247
GROSE MOTES . ettt 251

2.6 Wind instrumentso 251

2.6.1 Common notation for wind instruments............ L 251

References for wind instruments. 252

FIngerings 253
2.6, 2 BagDiDeS . ottt 253
Bagpipe definitions. 253
Bagpipe example. 253
2.7 Chord notation.o 255
2.7.1 Chord mOde. . ..o 255
Chord mMOde OVEIVIEWttt et ettt e 255
Common ChOTASot 256
Extended and altered chords i 257
2.7.2 Displaying chords ... 260
Printing chord names 260
Customizing chord names 263
2.7.3 Figured Dasso 266
Introduction to figured bass ... i 267
Entering figured bass. ... i 267
Displaying figured bass 270
2.8 Ancient notation 274
2.8.1 Overview of the supported styles........ ... i 274
2.8.2 Ancient notation—common features i 275
Pre-defined contexts. i 275
Ligatures 275
CUSTOAES . - . vttt e 276
Figured bass support 277
2.8.3 Typesetting mensural music i 277
Mensural COntextso 277
Mensural clefs. 278
Mensural time Signatureso 279
Mensural note heads i 280
Mensural flags 280
Mensural TESTSo 281
Mensural accidentals and key signatures........... i 281
Annotational accidentals (musica ficta) 282
White mensural ligatures. 283
2.8.4 Typesetting Gregorian chant..............o. i 284
Gregorian chant Contextst 284
Gregorian clefs. 285
Gregorian accidentals and key signatures i 286
DIVISIONES . . 286
Gregorian articulation Signs ... 287
Augmentum dots (MOorae) 287
Gregorian square neume Hgatures.t 288
2.8.5 Working with ancient music—scenarios and solutions 295
nCIDItS .« . 295
Mensurstriche layout i 295
Transcribing Gregorian chant....... i i 296
Ancient and modern from one SOUrceoiuiiimiit i, 299
Editorial markings 299
2.9 World muUSIC . .« oo 299
2.9.1 Arabic MUSICot 299
References for Arabic musico e 299
Arabic NOtE NAIMESottt 300
Arabic key SIgnatures 300
Arabic time SIgnaturest 302

Arabic mMUSIC eXaMPIe 303

Further reading o 304

3 General input and output ... 305
3.1 Inputb Structure. . ..o e 305
3.1.1 Structure of a SCOTE.t 305
3.1.2 Multiple scores in a book oo i 306
3.1.3 File structure. 307
3.2 Titles and headers. i 309
3.2.1 Creating titles. . ..o 309
3.2.2 Custom tItles. 312
3.2.3 Reference to page numbers 313
3.2.4 Table of contents. 314
3.3 Working with input files. ... 316
3.3.1 Including LilyPond files i 316
3.3.2 Different editions from one source......... i i 317
Using variables.o 317
USIE baS « o e vttt et e 318

3.3.3 Text encodingcoouuiiiii 321
3.3.4 Displaying LilyPond notation........... i 322
3.4 Controlling outputo 322
3.4.1 Extracting fragments of music....... o 322
3.4.2 Skipping corrected MUSICt v ettt e e 323
3.5 MIDI OUEPUL « -« e 323
3.5.1 Creating MIDI files. e 324
Instrument names. ... e 324

3.5.2 MIDI block. ..o 326
3.5.3 What goes into the MIDI output? ... 326
Supported in MIDI. 326
Unsupported in MIDIo oo 327

3.5.4 Repeatsin MIDIo o 327
3.5.5 Controlling MIDI dynamics.ooouuiiiiii i 328
Dynamic marks 328
Overall MIDI volume. e 329
Equalizing different instruments (1) 330
Equalizing different instruments (ii) i 331

3.5.6 Percussion in MIDI. e 332

4 Spacing iSSUES ...ttt 333
4.1 Paper and Pagesttt e 333
411 Paper SIZe. ... 333
4.1.2 Page formatting i 334
Vertical dimensions. 334
Horizontal dimensions 336
Other layout variables. 336

4.2 MUusic layout 338
4.2.1 Setting the staff size. 338
4.2.2 Score 1ayoub 339
4.3 Breaks . ..o 340
4.3.1 Line breaking 340
4.3.2 Page breaking 341
4.3.3 Optimal page breaking 342
4.3.4 Optimal page tUrningcoou i e 342

4.3.5 Minimal page breakingt 343

4.3.6 Explicit breaks e 344
4.3.7 Using an extra voice for breaks i 345
4.4 Vertical SPaCINGttt 347
4.4.1 Vertical spacing inside a system. i 347
4.4.2 Vertical spacing between systems 349
4.4.3 Explicit staff and system positioning............ i 352
4.4.4 Two-pass vertical SPacCing.oouii e 358
4.4.5 Vertical collision avoidancec.oo i 359
4.5 Horizontal Spacing 360
4.5.1 Horizontal Spacing OVEIVIEWottt 360
4.5.2 NeW SPACIIE ATEA. .« ottt ettt ettt e et 362
4.5.3 Changing horizontal spacing.......... ... 362
4.5.4 Line length.o 364
4.5.5 Proportional notation 365
4.6 Fitting music onto fewer pagest 371
4.6.1 Displaying SPacCing.cuunuttt it 371
4.6.2 Changing SPaCINGunu ittt 372

5 Changing defaults............... 375
5.1 Interpretation contextscooiiiiiiii e 375
5.1.1 Contexts explained 375
Score - the master of all contexts......... i i 375
Top-level contexts - staff containers........ i 375
Intermediate-level contexts - staves........ ... oo i i 376
Bottom-level contexts - VOICESot 376

5.1.2 Creating contexts 377
5.1.3 Modifying context plug-insouuiiiiii i 378
5.1.4 Changing context default settings......., 380
5.1.5 Defining new contextst 380
5.1.6 AlIgNing COMBEXtS . .. n vttt e e e 382
5.2 Explaining the Internals Reference........ i i i 383
5.2.1 Navigating the program reference.......... 383
5.2.2 Layout Interfaces 384
5.2.3 Determining the grob property 385
5.2.4 Naming CONVENTIONSttt ettt 386
5.3 Modifying properties 386
5.3.1 Overview of modifying properties.......... ... 386
5.3.2 The \set commandouuiiiiinn e 388
5.3.3 The \override commandcoiuuuiiiittaii i 389
5.3.4 The \tweak commandouuiiiiiiii e 390
5.3.5 \Set VS, \OVEITIAE ...ttt e 392
5.4 Useful concepts and propertiesoouuue oot 392
5.4.1 Input mMoOdest 392
5.4.2 Direction and placement i 394
5.4.3 Distances and measurements.ottt e 394
5.4.4 Staff symbol propertiesoi i 395
D.A.D SPAIIIETS . . oottt et e e e e e 396
Using the spanner-interfaceo 396
Using the line-spanner-interfacec..cooiuiiiiiiniiiiiiinineninenn.. 398

5.4.6 Visibility of objects. 400
Removing the stencil 401
Making objects transparent. 401
Painting objects white. 401

Using break-visibility 402

Special considerations 403

D47 Lne styles ..o 405
5.4.8 Rotating objects. 406
Rotating layout objects. i 406
Rotating markup. ... 406

5.5 Advanced tweaks. 407
5.5.1 Aligning objects.o 407
Setting X-offset and Y-offset directly.......... ... i 407
Using the side-position-interfacec.cooiiiiiiiiiiiiiinennnennnnnn. 408
Using the self-alignment-interface............ ... oo, 408
Using the break-alignable-interface............ ..o, 409

5.5.2 Vertical grouping of grobs i 411
5.5.3 Modifying stencils. ... 411
5.5.4 Modifying shapes. ... 412
Modifying ties and slurs....... ... 412

6 Interfaces for programmers 414
6.1 Music fUNCEIONSottt e e 414
6.1.1 Overview of music functions 414
6.1.2 Simple substitution functions.......... 414
6.1.3 Paired substitution functions 416
6.1.4 Mathematics in functions. e 416
6.1.5 Void functions. e 417
6.1.6 Functions without arguments....... 417
6.1.7 Overview of available music functions............. L. 417
6.2 Programmer interfaces 421
6.2.1 Input variables and Scheme............ 421
6.2.2 Internal music representation i 422
6.3 Building complicated functions 422
6.3.1 Displaying music €XPreSSIONSttt ettt et 423
6.3.2 MUSIC PrOPErtiest e 423
6.3.3 Doubling a note with slurs (example) i, 424
6.3.4 Adding articulation to notes (example) 425
6.4 Markup programmer interface 427
6.4.1 Markup construction in Scheme.......... 428
6.4.2 How markups work internally......... ... 428
6.4.3 New markup command definition.............. i 429
6.4.4 New markup list command definitiono .. 431
6.5 Contexts for Programmmersttt e 431
6.5.1 Context evaluation i 431
6.5.2 Running a function on all layout objects........... ... o i 432
6.6 Scheme procedures as Properties.oouueii ettt 432
6.7 Using Scheme code instead of \tweak.............oouiiiiiiiiiiiiiiiiaaa.. 433
6.8 Difficult tweaks 434

Appendix A Literature list 436

Appendix B Notation manual tables........................ 437
B.1 Chord name chart 437
B.2 Common chord modifiers i 438
B.3 Predefined fretboard diagrams i 441
B4 MIDI instruments e 444
B.5 List of COlOrs ..o 445
B.6 The Feta font. 446

Clef glyphs . .o 446
Time Signature glyphs 447
Number glyphs. ..o 447
Accidental glyphs 448
Default Notehead glyphs e 449
Special Notehead glyphs. ... 449
Shape-note Notehead glyphs. e 450
Rest glyphs ..o 451
Flag glyphs . oo 451
Dot gLy RS . .o 452
Dynamic glyphs 452
SCrIPt Ly DR . oot 452
Arrowhead glyphs 454
Bracket-tip glyphs. ..o 455
Pedal glyphs ... oo 455
Accordion glyphs.o 455
Vaticana glyphso 455
Medicaea glyphs 456
Hufnagel glyphs 457
Mensural glyphs. . ..o 458
Neomensural glyphs 460
Petrucci glyphs. 461
Solesmes glyphs . ..o 462
B.7 Note head styles 462
B.8 Text markup commands 463
BBl Fomt ..o 463
B2 AN . 471
B.8.3 Graphic.o 485
B84 MUSIC. ..ttt 489
B.8.5 Imstrument Specific Markup....... ..o i 492
B.8.6 Other. ... 495
B.9 Text markup list commands. i 499
B.10 List of articulations. 500
B.11 Percussion NOTES.ottuiiiii e 501
B.12 All context properties.t e 502
B.13 Layout properties. 512
B.14 Tdentifiers e 526
B.15 Scheme functions i e 529
Appendix C Cheat sheet..................................... 549
Appendix D LilyPond grammar............................. 553

Appendix E GNU Free Documentation License 572

Appendix F LilyPond command index

Appendix G LilyPond index

Chapter 1: Musical notation 1

1 Musical notation

This chapter explains how to create musical notation.
1.1 Pitches

dolce e molto ligato

0 tda R WYl .
'lel{. ’I”' o ¥ bk ' I) M [[I. -
U by

D, # . & %, ®

> fe o F
o B R iy o

I
I
P
B e I — |
hi/
Rd. *®

This section discusses how to specify the pitch of notes. There are three steps to this process:
input, modification, and output.

1.1.1 Writing pitches

This section discusses how to input pitches. There are two different ways to place notes in
octaves: absolute and relative mode. In most cases, relative mode will be more convenient.

Absolute octave entry

A pitch name is specified using lowercase letters a through g. The note names ¢ to b are engraved
in the octave below middle C.

\clef bass
cdef
gabc
defg

i >

- 2 — i_ |

Other octaves may be specified with a single quote (') or comma (,) character. Each ' raises
the pitch by one octave; each , lowers the pitch by an octave.
\clef treble
c''c''e' g
d'*'d'" dc
\clef bass
c, C,, €, g

Chapter 1: Musical notation 2

d,, d, d c
D
R e —
v * ¥ "33 $3* FT
* v = e
See also

Music Glossary: Section “Pitch names” in Music Glossary.

Snippets: Section “Pitches” in Snippets.

Relative octave entry

When octaves are specified in absolute mode it is easy to accidentally put a pitch in the wrong
octave. Relative octave mode reduces these errors since most of the time it is not necessary to
indicate any octaves at all. Furthermore, in absolute mode a single mistake may be difficult to
spot, while in relative mode a single error puts the rest of the piece off by one octave.

\relative startpitch musicexpr

In relative mode, each note is assumed to be as close to the previous note as possible. This
means that the octave of each pitch inside musicexpr is calculated as follows:

e If no octave changing mark is used on a pitch, its octave is calculated so that the interval
with the previous note is less than a fifth. This interval is determined without considering
accidentals.

e An octave changing mark ' or , can be added to respectively raise or lower a pitch by an
extra octave, relative to the pitch calculated without an octave mark.

e Multiple octave changing marks can be used. For example, '' and ,, will alter the pitch
by two octaves.

e The pitch of the first note is relative to startpitch. startpitch is specified in absolute
octave mode, and it is recommended that it be a octave of c.

Here is the relative mode shown in action:

\relative c¢ {
\clef bass
cdef
gabc
defg

}

)
e
1))

B - -

Octave changing marks are used for intervals greater than a fourth:
\relative c'' {
cgcit,
c' a, e'' ¢

Chapter 1: Musical notation 3

et e

e) | | | ;: |

A note sequence without a single octave mark can nevertheless span large intervals:

\relative c {
cfbe

PN

«

A
T7Te

If the preceding item is a chord, the first note of the chord is used as the reference point for
the octave placement of a following note or chord. Inside chords, the next note is always relative
to the preceding one. Examine the next example carefully, paying attention to the ¢ notes.

\relative c' {

C
<c e g>
<c' e g'>

<c, e, g''>

R
=

As explained above, the octave of pitches is calculated only with the note names, regardless
of any alterations. Therefore, an E-double-sharp following a B will be placed higher, while an
F-double-flat will be placed lower. In other words, a double-augmented fourth is considered a
smaller interval than a double-diminished fifth, regardless of the number of semitones that each
interval contains.

\relative c'' {
c2 fis

\

T
Q1
1T
1T
o=
\

See also

Music Glossary: Section “fifth” in Music Glossary, Section “interval” in Music Glossary,
Section “Pitch names” in Music Glossary.

Notation Reference: [Octave checks], page 7.

Snippets: Section “Pitches” in Snippets.

Internals Reference: Section “RelativeOctaveMusic” in Internals Reference.

Chapter 1: Musical notation 4

Known issues and warnings

The relative conversion will not affect \transpose, \chordmode or \relative sections in its
argument. To use relative mode within transposed music, an additional \relative must be
placed inside \transpose.

If no startpitch is specified for \relative, then c' is assumed. However, this is a deprecated
option and may disappear in future versions, so its use is discouraged.

Accidentals

(N
Note: New users are sometimes confused about accidentals and key
signatures. In LilyPond, note names are the raw input; key signatures
and clefs determine how this raw input is displayed. An unaltered note
like ¢ means ‘C natural’, regardless of the key signature or clef. For more
information, see Section “Accidentals and key signatures” in Learning
Manual.

J

A sharp pitch is made by adding is to the note name, and a flat pitch by adding es. As
you might expect, a double sharp or double flat is made by adding isis or eses. This syntax
is derived from Dutch note naming conventions. To use other names for accidentals, see [Note
names in other languages]|, page 6.

aisl aes aisis aeses

i }
jo)X @) O 10X @

G

A natural will cancel the effect of an accidental or key signature. However, naturals are not
encoded into the note name syntax with a suffix; a natural pitch is shown as a simple note name:

a4 aes a2
()
)4
® L
[Y)

Quarter tones may be added; the following is a series of Cs with increasing pitches:

cesehl ces ceh ¢ cih cis cisih

i i gy
T PO PO qO O jo
Z

ey

iy
<« 1L
Ll

{
A §

G

Normally accidentals are printed automatically, but you may also print them manually. A
reminder accidental can be forced by adding an exclamation mark ! after the pitch. A cautionary
accidental (i.e., an accidental within parentheses) can be obtained by adding the question mark ?
after the pitch. These extra accidentals can also be used to produce natural signs.

cis cis cis! cis? ¢ c c! c?
Z
ANV | | |

e) | | |

Accidentals on tied notes are only printed at the beginning of a new system:

Chapter 1: Musical notation

cisl 7 cis

\break

cis
O 1L P
/\ o1l O [@)
[[an Y Wk L
ANV
()

3

Selected Snippets

Preventing extra naturals from being automatically added

In accordance with standard typesetting rules, a natural sign is printed before a sharp or flat
if a previous accidental on the same note needs to be canceled. To change this behavior, set the

extraNatural property to "false" in the Staff context.

\relative c'' {
aeses4 aes ais a
\set Staff.extraNatural = ##f
aeses4 aes ais a

Makam example

Makam is a type of melody from Turkey using 1/9th-tone microtonal alterations. Consult
the initialization file ‘ly/makam.1ly’ for details of pitch names and alterations.

% Initialize makam settings
\include "makam.ly"

\relative c' {

\set Staff.keySignature = # ((3 . ,BAKIYE) (6

c4 cc db fk
gbm4 gfc gfb efk
fk4 db cc ¢

EL o

D]

G e

}e

, (- KOMA)))

Chapter 1: Musical notation 6

See also

Music Glossary: Section “sharp” in Music Glossary, Section “flat” in Music Glossary, Section
“double sharp” in Music Glossary, Section “double flat” in Music Glossary, Section “Pitch
names” in Music Glossary, Section “quarter tone” in Music Glossary.

Learning Manual: Section “Accidentals and key signatures” in Learning Manual.

Notation Reference: [Automatic accidentals|, page 18, [Annotational accidentals (musica
ficta)], page 282, [Note names in other languages|, page 6.

Snippets: Section “Pitches” in Snippets.

Internals Reference: Section “Accidental_engraver” in Internals Reference, Section “Acci-
dental” in Internals Reference, Section “AccidentalCautionary” in Internals Reference, Section
“accidental-interface” in Internals Reference.

Known issues and warnings

There are no generally accepted standards for denoting quarter-tone accidentals, so LilyPond’s
symbol does not conform to any standard.

Note names in other languages

There are predefined sets of note and accidental names for various other languages. To use them,
include the language-specific init file listed below. For example, to use English note names, add
\include "english.ly" to the input file.

Note: Because = some other include files (such as
predefined-fretboards.ly) wuse default (Nederlands) note
names, the \include command for the language file should be placed
after all other LilyPond distribution files.

The available language files and the note names they define are:

Language File Note Names
‘nederlands.ly’ cdefgabesb
‘arabic.ly’ do re mi fa sol la sib si
‘catalan.ly’ do re mi fa sol la sib si
‘deutsch.ly’ cdefgabh
‘english.ly’ cdefgabfb
‘espanol.ly’ do re mi fa sol la sib si
‘italiano.ly’ do re mi fa sol la sib si
‘norsk.ly’ cdefgabh
‘portugues.ly’ do re mi fa sol la sib si
‘suomi.ly’ cdefgabh
‘svenska.ly’ cdefgabh
‘vlaams.ly’ do re mi fa sol la sib si

and the accidental suffixes they define are:

Language File sharp flat double sharp double flat
‘nederlands.ly’ -is -es -isis -eses
‘arabic.ly’ -d -b -dd -bb
‘catalan.ly’ -d/-s -b -dd/-ss -bb
‘deutsch.ly’ -is -es -isis -eses

‘english.ly’ -s/-sharp -f/-flat -ss/-x/-sharpsharp -ff/-flatflat

Chapter 1: Musical notation 7

‘espanol.ly’ -s -b -SS -bb
‘italiano.ly’ -d -b -dd -bb
‘norsk.ly’ -iss/-is -ess/-es -ississ/-isis -essess /-eses
‘portugues.ly’ -s -b -ss -bb
‘suomi.ly’ -is -es -isis -eses
‘svenska.ly’ -iss -ess -ississ -essess
‘vlaams.ly’ -k -b -kk -bb

In Dutch, aes is contracted to as, but both forms are accepted in LilyPond. Similarly, both
es and ees are accepted. This also applies to aeses / ases and eeses / eses. Sometimes only
these contracted names are defined in the corresponding language files.

a2 as e es a ases e eses

Q
-
Q
\
S =
\

N (o

QL
P
QL
\
¥
\

P
—

Some music uses microtones whose alterations are fractions of a ‘normal’ sharp or flat. The
note names for quarter-tones defined in the various language files are listed in the following
table. Here the prefixes semi- and sesqui- mean ‘half’ and ‘one and a half’, respectively. For the
other languages, no special names have been defined yet.

Language File semi-sharp semi-flat sesqui-sharp sesqui-flat
‘nederlands.ly’ -ih -eh -isih -eseh
‘arabic.ly’ -sd -sb -dsd -bsb
‘deutsch.ly’ -ih -eh -isih -eseh
‘english.ly’ -qs -qf -tgs -tqf
‘italiano.ly’ -sd -sb -dsd -bsb
‘portugues.ly’ -sqt -bqt -stqt -btqt
See also

Music Glossary: Section “Pitch names” in Music Glossary.

Snippets: Section “Pitches” in Snippets.

1.1.2 Changing multiple pitches

This section discusses how to modify pitches.

Octave checks

In relative mode, it is easy to forget an octave changing mark. Octave checks make such errors
easier to find by displaying a warning and correcting the octave if a note is found in an unexpected
octave.

To check the octave of a note, specify the absolute octave after the = symbol. This example
will generate a warning (and change the pitch) because the second note is the absolute octave
d'' instead of d' as indicated by the octave correction.

\relative c'' {
c2 d='4 d
e2 f

Chapter 1: Musical notation 8

(\TEER
Q

The octave of notes may also be checked with the \octaveCheck controlpitch command.
controlpitch is specified in absolute mode. This checks that the interval between the previous
note and the controlpitch is within a fourth (i.e., the normal calculation of relative mode). If
this check fails, a warning is printed, but the previous note is not changed. Future notes are
relative to the controlpitch.

\relative c'' {

c2 d

\octaveCheck c'

e2 f

}

()

)" 4 =))

/\ e 7 | |

U | | |
{ ! 7

Compare the two bars below. The first and third \octaveCheck checks fail, but the second
one does not fail.

\relative c'' {
cd £ gt

c4
\octaveCheck c'
f

\octaveCheck c'
g

\octaveCheck c'
f

o

See also
Snippets: Section “Pitches” in Snippets.

Internals Reference: Section “RelativeOctaveCheck” in Internals Reference.

Transpose
A music expression can be transposed with \transpose. The syntax is
\transpose frompitch topitch musicexpr

This means that musicexpr is transposed by the interval between the pitches frompitch and
topitch: any note with pitch frompitch is changed to topitch and any other note is transposed
by the same interval. Both pitches are entered in absolute mode.

Consider a piece written in the key of D-major. It can be transposed up to E-major; note
that the key signature is automatically transposed as well.

Chapter 1: Musical notation 9

\transpose d e {
\relative c' {
\key d \major
d4 fis a d

If a part written in C (normal concert pitch) is to be played on the A clarinet (for which an
A is notated as a C and thus sounds a minor third lower than notated), the appropriate part
will be produced with:

\transpose a c' {
\relative c' {
\key c \major
cddeg

D i

Note that we specify \key ¢ \major explicitly. If we do not specify a key signature, the notes
will be transposed but no key signature will be printed.

\transpose distinguishes between enharmonic pitches: both \transpose c cis or
\transpose c des will transpose up a semitone. The first version will print sharps and the
notes will remain on the same scale step, the second version will print flats on the scale step
above.

music = \relative ¢' { cde f }
\new Staff {
\transpose ¢ cis { \music }
\transpose c des { \music }

}

)’ A)
7\ r)
[[av Y 1L s 1

\transpose may also be used in a different way, to input written notes for a transposing
instrument. The previous examples show how to enter pitches in C (or concert pitch) and typeset
them for a transposing instrument, but the opposite is also possible if you for example have a
set of instrumental parts and want to print a conductor’s score. For example, when entering
music for a B-flat trumpet that begins on a notated E (concert D), one would write:

musicInBflat = { e4 ... }
\transpose ¢ bes, \musicInBflat

To print this music in F (e.g., rearranging to a French horn) you could wrap the existing music
with another \transpose:

Chapter 1: Musical notation 10

musicInBflat = { e4 ... }
\transpose f c¢' { \transpose c bes, \musicInBflat }

For more information about transposing instruments, see [Instrument transpositions|, page 17.

Selected Snippets

Transposing pitches with minimum accidentals (" Smart" transpose)

This example uses some Scheme code to enforce enharmonic modifications for notes in order
to have the minimum number of accidentals. In this case, the following rules apply:

Double accidentals should be removed

B sharp -> C

E sharp -> F

C flat -> B

F flat > E

In this manner, the most natural enharmonic notes are chosen.

#(define (naturalize-pitch p)
(let ((o (ly:pitch-octave p))
(a (* 4 (ly:pitch-alteration p)))
;; alteration, a, in quarter tone steps,
;; for historical reasons
(n (ly:pitch-notename p)))
(cond
((and (> a 1) (or (eq? n 6) (eq? n 2)))
(set! a (- a 2))
(set! n (+ n 1)))
((and (< a -1) (or (eq? n 0) (eq? n 3)))
(set! a (+ a 2))
(set! n (- n 1))))
(cond
(> a2) (set! a (- a4)) (set! n (+n 1)))
((<a=-2) (set! a (+ a4)) (set! n (-n 1))))
(if (< n 0) (begin (set! o (- o 1)) (set! n (+ n 7))))
(if (> n 6) (begin (set! o (+ 0 1)) (set! n (- n 7))))
(1y:make-pitch o n (/ a 4))))

#(define (naturalize music)
(let ((es (ly:music-property music 'elements))
(e (ly:music-property music 'element))
(p (ly:music-property music 'pitch)))
(if (pair? es)
(ly:music-set-property!
music 'elements
(map (lambda (x) (naturalize x)) es)))
(if (ly:music? e)
(ly:music-set-property!
music 'element
(naturalize e)))
(if (ly:pitch? p)
(begin
(set! p (naturalize-pitch p))
(ly:music-set-property! music 'pitch p)))

Chapter 1: Musical notation

music))

naturalizeMusic =

#(define-music-function (parser location m)
(ly:music?)
(naturalize m))

music = \relative c' { c4de g}

\score {
\new Staff {
\transpose ¢ ais { \music }
\naturalizeMusic \transpose c ais { \music }
\transpose ¢ deses { \music }
\naturalizeMusic \transpose c deses { \music }
}
\layout { }
}

See also

Notation Reference: [Instrument transpositions|, page 17.
Snippets: Section “Pitches” in Snippets.
Internals Reference: Section “TransposedMusic” in Internals Reference.

Known issues and warnings

11

The relative conversion will not affect \transpose, \chordmode or \relative sections in its
argument. To use relative mode within transposed music, an additional \relative must be

placed inside \transpose.

1.1.3 Displaying pitches

This section discusses how to alter the output of pitches.

Clef

The clef may be altered. Middle C is shown in every example.

\clef treble
c2 c

\clef alto
c2 c

\clef tenor
c2 c

\clef bass
c2 c

Gz el
®
=
;%

g
g
W

Chapter 1: Musical notation 12

Other clefs include:

\clef french

c2 c

\clef soprano

c2 c

\clef mezzosoprano
c2 c

\clef baritone

c2 c

\break

\clef varbaritone
c2 c

\clef subbass

c2 c

\clef percussion
c2 c

\clef tab

c2 c

>
»
oo

T

o

;o
|
|

(o2
%
%

d
\

T

T
g

T

)
-
|

Further supported clefs are described under [Mensural clefs], page 278 and [Gregorian clefs],
page 285.

By adding _8 or "8 to the clef name, the clef is transposed one octave down or up, respectively,
and _15 and ~15 transpose by two octaves. The clef name must be enclosed in quotes when it
contains underscores or digits.

\clef treble

c2 c

\clef "treble_8"

c2 c

\clef "bass~15"

c2 c

B En

f 0 o
J\ (e 77 7 KX 11 |
Gt for ==
U | Ing

Selected Snippets

Tweaking clef properties

The command \clef "treble_8" is equivalent to setting clefGlyph, clefPosition (which
controls the vertical position of the clef), middleCPosition and clefOctavation. A clef is
printed when any of the properties except middleCPosition are changed.

Chapter 1: Musical notation 13

Note that changing the glyph, the position of the clef, or the octavation does not in itself
change the position of subsequent notes on the staff: the position of middle C must also be
specified to do this. The positional parameters are relative to the staff center line, positive
numbers displacing upwards, counting one for each line and space. The clefOctavation value
would normally be set to 7, -7, 15 or -15, but other values are valid.

When a clef change takes place at a line break the new clef symbol is printed at both the
end of the previous line and the beginning of the new line by default. If the warning clef at
the end of the previous line is not required it can be suppressed by setting the Staff property
explicitClefVisibility to the value end-of-line-invisible. The default behavior can be
recovered with \unset Staff.explicitClefVisibility.

The following examples show the possibilities when setting these properties manually. On
the first line, the manual changes preserve the standard relative positioning of clefs and notes,
whereas on the second line, they do not.

\layout { ragged-right = ##t }

{
% The default treble clef
c'l
% The standard bass clef
\set Staff.clefGlyph = #"clefs.F"
\set Staff.clefPosition = #2
\set Staff.middleCPosition = #6
c'l
% The baritone clef
\set Staff.clefGlyph = #"clefs.C"
\set Staff.clefPosition = #4
\set Staff.middleCPosition = #4
c'l
% The standard choral tenor clef
\set Staff.clefGlyph = #"clefs.G"
\set Staff.clefPosition = #-2
\set Staff.clefOctavation = #-7
\set Staff.middleCPosition = #1
c'l
% A non-standard clef
\set Staff.clefPosition = #0
\set Staff.clefOctavation = #0
\set Staff.middleCPosition = #-4
c'1l \break

% The following clef changes do not preserve
% the normal relationship between notes and clefs:

\set Staff.clefGlyph = #"clefs.F"
\set Staff.clefPosition = #2

c'1
\set Staff.clefGlyph = #"clefs.G"
c'l
\set Staff.clefGlyph = #"clefs.C"
c'l

\set Staff.clefOctavation = #7

Chapter 1: Musical notation 14

c'l

\set Staff.clefOctavation = #0
\set Staff.clefPosition = #0
c'1l

% Return to the normal clef:

\set Staff.middleCPosition = #0

c'l

}
Q -e-Ha o—f) 0
/\ r £) ‘)' had A O ﬁh ‘)_
[[an YA W] Z A\a7 7
ANV, XV e) P
[Y) o Y

o)

8
oG- B Bp

Pa' >
< L 4

(
o}

See also

Notation Reference: [Mensural clefs], page 278, [Gregorian clefs], page 285.
Snippets: Section “Pitches” in Snippets.

Internals Reference: Section “Clef_engraver” in Internals Reference, Section “Clef” in In-
ternals Reference, Section “OctavateEight” in Internals Reference, Section “clef-interface” in
Internals Reference.

Key signature

()
Note: New users are sometimes confused about accidentals and key
signatures. In LilyPond, note names are the raw input; key signatures
and clefs determine how this raw input is displayed. An unaltered note
like ¢ means ‘C natural’, regardless of the key signature or clef. For more
information, see Section “Accidentals and key signatures” in Learning
Manual.
-

J

The key signature indicates the tonality in which a piece is played. It is denoted by a set of
alterations (flats or sharps) at the start of the staff. The key signature may be altered:

\key pitch mode

Here, mode should be \major or \minor to get a key signature of pitch-major or pitch-minor,
respectively. You may also use the standard mode names, also called church modes: \ionian,
\dorian, \phrygian, \lydian, \mixolydian, \aeolian, and \locrian.

\key g \major

fisl
f
fis
4\ LMY £ !
[[an) A U
ANV
e

Chapter 1: Musical notation 15

Selected Snippets

Preventing natural signs from being printed when the key signature changes

When the key signature changes, natural signs are automatically printed to cancel any
accidentals from previous key signatures. This may be prevented by setting to "false" the
printKeyCancellation property in the Staff context.

\relative c¢' {

\key d \major

a4 b cis d

\key g \minor

a4 bes c d

\set Staff.printKeyCancellation = ##f
\key d \major

a4 b cis d

\key g \minor

a4 bes c d

-
|

S
L

N

o
E==

=2
o
N |®]
YL
T

G

o & ®

o7

1
1
Y,

Non-traditional key signatures
The commonly used \key command sets the keySignature property, in the Staff context.

To create non-standard key signatures, set this property directly. The format of this command
is a list:

\set Staff.keySignature = # (((octave . step) . alter) ((octave . step) . alter)
...) where, for each element in the list, octave specifies the octave (0 being the octave
from middle C to the B above), step specifies the note within the octave (0 means C and 6
means B), and alter is ,SHARP ,FLAT ,DOUBLE-SHARP etc. (Note the leading comma.) The
accidentals in the key signature will appear in the reverse order to that in which they are
specified.

Alternatively, for each item in the list, using the more concise format (step . alter) specifies
that the same alteration should hold in all octaves.

For microtonal scales where a "sharp" is not 100 cents, alter refers to the alteration as a
proportion of a 200-cent whole tone.

Here is an example of a possible key signature for generating a whole-tone scale:

\relative c' {
\set Staff.keySignature = # (((0 . 3) . ,SHARP)
(0 . 5) . ,FLAT)
(0 . 6) . ,FLAT))
c4d d e fis
aes4 bes c2

)’ 4
4\ ') | (o
[fanY 1 W7

:\ , q o @ I

Koy

Chapter 1: Musical notation 16

See also

Music Glossary: Section “church mode” in Music Glossary, Section “scordatura” in Music
Glossary.

Learning Manual: Section “Accidentals and key signatures” in Learning Manual.
Snippets: Section “Pitches” in Snippets.

Internals Reference: Section “KeyChangeEvent” in Internals Reference, Section
“Key_engraver” in Internals Reference, Section “Key_performer” in Internals Refer-
ence, Section “KeyCancellation” in Internals Reference, Section “KeySignature” in
Internals Reference, Section “key-cancellation-interface” in Internals Reference, Section
“key-signature-interface” in Internals Reference.

Ottava brackets

Ottava brackets introduce an extra transposition of an octave for the staff:

a'2 b
\ottava #1
ab
\ottava #0
ab

N 5 £ 8|va--1 - 2
)" 4 |

{~—€ 2 —

o I

The ottava function also takes -1 (for 8va bassa), 2 (for 15ma), and -2 (for 15ma bassa) as
arguments.

Selected Snippets
Ottava text

Internally, \ottava sets the properties ottavation (for example, to "8va" or "8vb") and
middleCPosition. To override the text of the bracket, set ottavation after invoking \ottava.

{
\ottava #1
\set Staff.ottavation = #"8"
c''1
\ottava #0
c'l
\ottava #1
\set Staff.ottavation = #"Text"
c''1

o) 8- Text- -
)" 4

4\ r £)

[[an YA O]

ANV

[y o © ©

Chapter 1: Musical notation 17

See also

Music Glossary: Section “octavation” in Music Glossary .
Snippets: Section “Pitches” in Snippets.

Internals Reference: Section “Ottava_spanner_engraver” in Internals Reference, Section “Ot-
tavaBracket” in Internals Reference, Section “ottava-bracket-interface” in Internals Reference.

Instrument transpositions

When typesetting scores that involve transposing instruments, some parts can be typeset in a
different pitch than the concert pitch. In these cases, the key of the transposing instrument
should be specified; otherwise the MIDI output and cues in other parts will produce incorrect
pitches. For more information about quotations, see [Quoting other voices|, page 143.
\transposition pitch

The pitch to use for \transposition should correspond to the real sound heard when a c'
written on the staff is played by the transposing instrument. This pitch is entered in absolute
mode, so an instrument that produces a real sound which is one tone higher than the printed
music should use \transposition d'. \transposition should only be used if the pitches are
not being entered in concert pitch.

Here are a few notes for violin and B-flat clarinet where the parts have been entered using
the notes and key as they appear in each part of the conductor’s score. The two instruments
are playing in unison.

\new GrandStaff <<
\new Staff = "violin" {
\relative c'' {
\set Staff.instrumentName = #"Vln"
\set Staff.midiInstrument = #"violin"
% not strictly necessary, but a good reminder
\transposition c'

\key c \major
gdh(c8) rcrch
+
}
\new Staff = "clarinet" {
\relative c'' {
\set Staff.instrumentName = \markup { Cl (B\flat) }
\set Staff.midiInstrument = #"clarinet"
\transposition bes

\key d \major
a4(d8) r d r d4

}
}
>>
0
Vin| - € |/7|/7F
U | 4 r |
(I S—
Cl(B) %;Hij Sar

Chapter 1: Musical notation 18

The \transposition may be changed during a piece. For example, a clarinetist may switch
from an A clarinet to a B-flat clarinet.

\set Staff.instrumentName = #"Cl (A)"

\key a \major

\transposition a

cdef

\textLengthOn

s1*0"\markup { Switch to B\flat clarinet }
R1

\key bes \major
\transposition bes

c2 g
Switch to B, clarinet | | |
WL D
Cl(A) s] - Th 77—
(2] !
[y
See also

Music Glossary: Section “concert pitch” in Music Glossary, Section “transposing instrument”
in Music Glossary .

Notation Reference: [Quoting other voices|, page 143, [Transpose], page 8.
Snippets: Section “Pitches” in Snippets.

Automatic accidentals

There are many different conventions on how to typeset accidentals. LilyPond provides a func-
tion to specify which accidental style to use. This function is called as follows:

\new Staff <<
#(set-accidental-style 'voice)

{...%
>>

The accidental style applies to the current Staff by default (with the exception of the styles
piano and piano-cautionary, which are explained below). Optionally, the function can take a
second argument that determines in which scope the style should be changed. For example, to
use the same style in all staves of the current StaffGroup, use:

#(set-accidental-style 'voice 'StaffGroup)

The following accidental styles are supported. To demonstrate each style, we use the following
example:
musicA = {
<<

\relative c' {
cis'8 fis, d'4 <a cis>8 f bis4d |
cis2. <c, g'>4 |

}

\\

\relative c' {
ais'2 cis, |
fis8 b a4 cis2 |

Chapter 1: Musical notation 19

>>

musicB = {
\clef bass
\new Voice {
\voiceTwo \relative c' {
<fis, a cis>4
\change Staff = up

cis'

\change Staff = down
<fis, a>

\change Staff = up
dis' |

\change Staff = down
<fis, a cis>4 gis <f a d>2 |

\new PianoStaff {
<<
\context Staff = "up" {
#(set-accidental-style 'default)

\musicA

}

\context Staff = "down" {
#(set-accidental-style 'default)
\musicB

}

>>
}
0 —1 I L -
A gt - o —
Fr RN
ﬂ; 2
zﬁﬁi s i S
e | = '

Note that the last lines of this example can be replaced by the following, as long as the same
accidental style should be used in both staves.

\new PianoStaff {
<<

\context Staff = "up" {
%hly change the next line as desired:
#(set-accidental-style 'default 'Score)
\musicA

}

\context Staff = "down" {

Chapter 1: Musical notation

>>

default

voice

modern

}

20

\musicB

This is the default typesetting behavior. It corresponds to eighteenth-century com-
mon practice: accidentals are remembered to the end of the measure in which they
occur and only in their own octave. Thus, in the example below, no natural signs
are printed before the b in the second measure or the last c:

Fr
F

7

e —

o
-

4

- &
L]

The normal behavior is to remember the accidentals at Staff-level. In this style,
however, accidentals are typeset individually for each voice. Apart from that, the
rule is similar to default.

As a result, accidentals from one voice do not get canceled in other voices, which is
often an unwanted result: in the following example, it is hard to determine whether
the second a should be played natural or sharp. The voice option should therefore
be used only if the voices are to be read solely by individual musicians. If the staff
is to be used by one musician (e.g., a conductor or in a piano score) then modern or
modern-cautionary should be used instead.

0 .
srEr P T
il i S

This rule corresponds to the common practice in the twentieth century. It prints
the same accidentals as default, with two exceptions that serve to avoid ambiguity:
after temporary accidentals, cancellation marks are printed also in the following
measure (for notes in the same octave) and, in the same measure, for notes in other
octaves. Hence the naturals before the b and the ¢ in the second measure of the
upper staff:

Chapter 1: Musical notation 21

modern-cautionary
This rule is similar to modern, but the ‘extra’ accidentals (the ones not typeset
by default) are typeset as cautionary accidentals. They are by default printed
with parentheses, but they can also be printed in reduced size by defining the
cautionary-style property of AccidentalSuggestion.

- O A i

SRR
2

nﬂgzﬁcgg—:

modern-voice
This rule is used for multivoice accidentals to be read both by musicians playing
one voice and musicians playing all voices. Accidentals are typeset for each voice,
but they are canceled across voices in the same Staff. Hence, the a in the last
measure is canceled because the previous cancellation was in a different voice, and
the d in the lower staff is canceled because of the accidental in a different voice in
the previous measure:

e ke
§

modern-voice-cautionary
This rule is the same as modern-voice, but with the extra accidentals (the ones not
typeset by voice) typeset as cautionaries. Even though all accidentals typeset by
default are typeset with this rule, some of them are typeset as cautionaries.

sy

J .

e

~r K Bz
st

piano

This rule reflects twentieth-century practice for piano notation. Its behavior is very
similar to modern style, but here accidentals also get canceled across the staves in
the same GrandStaff or PianoStaff, hence all the cancellations of the final notes.

This accidental style applies to the current GrandStaff or PianoStaff by default.

Chapter 1: Musical notation 22

Fr
F

piano-cautionary
This is the same as piano but with the extra accidentals typeset as cautionaries.

T : '_(H')'q_. I l
ﬁE % e

e

Fr
F

Era

neo-modern
This rule reproduces a common practice in contemporary music: accidentals are
printed like with modern, but they are printed again if the same note appears later
in the same measure — except if the note is immediately repeated.

| 7 A LL I

e L

neo-modern-cautionary
This rule is similar to neo-modern, but the extra accidentals are printed as caution-
ary accidentals.

o)
o . |\'I1,l')l [
3&!& % e
P] s N

dodecaphonic
This rule reflects a practice introduced by composers at the beginning of the 20th
century, in an attempt to abolish the hierarchy between natural and non-natural
notes. With this style, every note gets an accidental sign, including natural signs.

0 - —) l.) i
riF e
Jﬂ#ﬁf:p&.hhha'

Chapter 1: Musical notation 23

teaching

This rule is intended for students, and makes it easy to create scale sheets with
automagically created cautionary accidentals. Accidentals are printed like with
modern, but cautionary accidentals are added for all sharp or flat tones specified by
the key signature, except if the note is immediately repeated.

O 4 # ~ | | | .
0| A L |
ﬂl va A\ =

r f- | 'q'-d-
X
0 et/ ot/ ®|
Z L A W2 | LA | ! | T
hl ! ! !

no-reset
This is the same as default but with accidentals lasting ‘forever’ and not only
within the same measure:
0 ' Ly l
I .
Fr e
/. \ WM | F | |
| | | |
forget

This is the opposite of no-reset: Accidentals are not remembered at all — and hence
all accidentals are typeset relative to the key signature, regardless of what came
before in the music. Unlike dodecaphonic, this rule never prints any naturals.

} 0 T'n.ul'a i
P = L=
nﬁk#! g

Selected Snippets

Dodecaphonic-style accidentals for each note including naturals

In early 20th century works, starting with Schoenberg, Berg and Webern (the "Second"
Viennese school), every pitch in the twelve-tone scale has to be regarded as equal, without any
hierarchy such as the classical (tonal) degrees. Therefore, these composers print one accidental
for each note, even at natural pitches, to emphasize their new approach to music theory and
language.

This snippet shows how to achieve such notation rules.

\score {
\new Staff {
#(set-accidental-style 'dodecaphonic)

Chapter 1: Musical notation 24

\layout {
\context {
\Staff
\remove "Key_engraver"
}
}
}

0
)" 4
7\ r)
[[av Y

T eiegete tehoiete fereiehe

See also

Snippets: Section “Pitches” in Snippets.

Internals Reference: Section “Accidental” in Internals Reference, Section “Acciden-
tal_engraver” in Internals Reference, Section “GrandStaff” in Internals Reference and
Section “PianoStaft” in Internals Reference, Section “Staff” in Internals Reference, Section
“AccidentalSuggestion” in Internals Reference, Section “AccidentalPlacement” in Internals
Reference, Section “accidental-suggestion-interface” in Internals Reference.

Known issues and warnings

Simultaneous notes are considered to be entered in sequential mode. This means that in a chord
the accidentals are typeset as if the notes in the chord happen one at a time, in the order in
which they appear in the input file. This is a problem when accidentals in a chord depend on
each other, which does not happen for the default accidental style. The problem can be solved
by manually inserting ! and ? for the problematic notes.

Ambitus

The term ambitus (pl. ambitus) denotes a range of pitches for a given voice in a part of music.
It may also denote the pitch range that a musical instrument is capable of playing. Ambitus are
printed on vocal parts so that performers can easily determine if it matches their capabilities.

Ambitus are denoted at the beginning of a piece near the initial clef. The range is graphically
specified by two note heads that represent the lowest and highest pitches. Accidentals are only
printed if they are not part of the key signature.

\layout {
\context {
\Voice
\consists "Ambitus_engraver"

}
+

\relative c'' {
aes c e2
cis,1

}

Chapter 1: Musical notation 25

foo ! fo

Selected Snippets
Adding ambitus per voice

Ambitus can be added per voice. In this case, the ambitus must be moved manually to
prevent collisions.

\new Staff <<
\new Voice \with {
\consists "Ambitus_engraver"
} \relative c'' {
\override Ambitus #'X-offset = #2.0
\voiceOne
cd ade
f1
+
\new Voice \with {
\consists "Ambitus_engraver"
} \relative c' {
\voiceTwo
es4d £ g as
b1
}

>>

00

Ambitus with multiple voices

Adding the Ambitus_engraver to the Staff context creates a single ambitus per staff, even
in the case of staves with multiple voices.

\new Staff \with {
\consists "Ambitus_engraver"
}
<<
\new Voice \relative c'' {
\voiceOne
cd ade
f1
}
\new Voice \relative c' {
\voiceTwo
es4 £ g as
b1
}

>>

Chapter 1: Musical notation 26

00

See also
Music Glossary: Section “ambitus” in Music Glossary.
Snippets: Section “Pitches” in Snippets.

Internals Reference: Section “Ambitus_engraver” in Internals Reference, Section “Voice” in
Internals Reference, Section “Staff” in Internals Reference, Section “Ambitus” in Internals Ref-
erence, Section “AmbitusAccidental” in Internals Reference, Section “AmbitusLine” in Internals
Reference, Section “AmbitusNoteHead” in Internals Reference, Section “ambitus-interface” in
Internals Reference.

Known issues and warnings

There is no collision handling in the case of multiple per-voice ambitus.

1.1.4 Note heads

This section suggests ways of altering note heads.

Special note heads
Note heads may be altered:

c4bab

\override NoteHead #'style = #'cross
cd bab

\revert NoteHead #'style

c4 def

—r-

|
X e
] r~
| | |
| |

There is a shorthand for diamond shapes which can only be used inside chords:

M1
T

<c f\harmonic>2 <d a'\harmonic>4 <c g'\harmonic>

() o
ANV - | |
U ' |

To see all note head styles, see Section B.7 [Note head styles], page 462.

See also
Snippets: Section “Pitches” in Snippets.
Notation Reference: Section B.7 [Note head styles], page 462, [Chorded notes|, page 108.

Internals Reference: Section “note-event” in Internals Reference, Section
“Note_heads_engraver” in Internals Reference, Section “Ledger_line_engraver” in In-
ternals Reference, Section “NoteHead” in Internals Reference, Section “LedgerLineSpanner”
in Internals Reference, Section “note-head-interface” in Internals Reference, Section
“ledger-line-spanner-interface” in Internals Reference.

Chapter 1: Musical notation 27

Easy notation note heads

The ‘easy play’ note head includes a note name inside the head. It is used in music for beginners.
To make the letters readable, it should be printed in a large font size. To print with a larger
font, see Section 4.2.1 [Setting the staff size], page 338.

#(set-global-staff-size 26)
\relative c' {
\easyHeadsOn
c2 e4 £
gl
\easyHeadsOf f
c,1

N
—

;\J_v < ©-

5

Predefined commands

\easyHeadsOn, \easyHeadsOff.

See also
Notation Reference: Section 4.2.1 [Setting the staff size], page 338.
Snippets: Section “Pitches” in Snippets.

Internals Reference: Section “note-event” in Internals Reference, Section
“Note_heads_engraver” in Internals Reference, Section “NoteHead” in Internals
Reference, Section “note-head-interface” in Internals Reference.

Shape note heads

In shape note head notation, the shape of the note head corresponds to the harmonic function
of a note in the scale. This notation was popular in nineteenth-century American song books.
Shape note heads can be produced:

\aikenHeads

c,def gabc
\sacredHarpHeads
c,def gabc

—
N (o]

G

— | s
- |

- |

Shapes are typeset according to the step in the scale, where the base of the scale is determined
by the \key command.

Predefined commands

\aikenHeads, \sacredHarpHeads.

Chapter 1: Musical notation 28

Selected Snippets

Applying note head styles depending on the step of the scale

The shapeNoteStyles property can be used to define various note head styles for each step
of the scale (as set by the key signature or the "tonic" property). This property requires a set of
symbols, which can be purely arbitrary (geometrical expressions such as triangle, cross, and
xcircle are allowed) or based on old American engraving tradition (some latin note names are
also allowed).

That said, to imitate old American song books, there are several predefined note head styles
available through shortcut commands such as \aikenHeads or \sacredHarpHeads.

This example shows different ways to obtain shape note heads, and demonstrates the ability
to transpose a melody without losing the correspondence between harmonic functions and note
head styles.

fragment = {
\key ¢ \major

c2 d
e2 f
g2 a
b2 ¢
}
\score {
\new Staff {
\transpose c d
\relative c' {
\set shapeNoteStyles = #'#(do re mi fa
#f la ti)
\fragment
}
\break
\relative c' {
\set shapeNoteStyles = #'#(cross triangle fa #f
mensural xcircle diamond)
\fragment
}
}
\layout { ragged-right = ##t }
}
) 4 | h
Y oL | A =19
\ "L £] 2 [l L
(en—1C 77— |
SV 3 | |
U A I !
5
f
(s ! =
ANV | [#) | |
J = PV ! !

To see all note head styles, see Section B.7 [Note head styles], page 462.

Chapter 1: Musical notation 29

See also
Snippets: Section “Pitches” in Snippets.

Notation Reference: Section B.7 [Note head styles|, page 462.
Section
Internals

Internals Reference,
“NoteHead” in

Internals Reference: Section “note-event” in
“Note_heads_engraver” in Internals Reference, Section
Reference, Section “note-head-interface” in Internals Reference.

Improvisation

Improvisation is sometimes denoted with slashed note heads, where the performer may choose
any pitch but should play the specified rhythm. Such note heads can be created:

\new Voice \with {
\consists "Pitch_squash_engraver"

P A{
e8 e g a al6(bes) a8 g
\improvisationOn
e8 ~
e2 ” e8 f4 £8 ~
2
\improvisationOff
al6(bes) a8 g e
}
PPAY I
I I } J—r /77— —~ 7 y 4 77—
/. V4 V74 A V4 y .
ANV b |] 1./] 1/
e) o~ I r I r
3 0 PAT I
A —r ! i
[farY V74
ANV]
U I

Predefined commands

\improvisationOn, \improvisationOff.

See also
Snippets: Section “Pitches” in Snippets.

Internals Reference: Section “Pitch_squash_engraver” in Internals Reference, Section “Voice”
in Internals Reference, Section “RhythmicStaff” in Internals Reference.

1.2 Rhythms

H 1 . #r_——‘\\\"———‘\ — . ;/_E? iﬁl iﬁi:
#&#H % t uP r bl_r—'—q-h H .
a tempo cresc.
cantabile
e e e e e e e e e e e s e e =t

Chapter 1: Musical notation

o 8 ~ b ’\;\'/:.\5 T I a
B le PP T leasabeepsPlere - =i i be pleee
A b Egs R LDCE i - L el #
SR ' == . R A b
v 1 = -
cresc.

[

oppplalelatata Pt FRals Falaiaietety

This section discusses rhythms, rests, durations, beaming and bars.
1.2.1 Writing rhythms

Durations

Durations are designated by numbers and dots. Durations are entered as their reciprocal values.
For example, a quarter note is entered using a 4 (since it is a 1/4 note), and a half note is
entered using a 2 (since it is a 1/2 note). For notes longer than a whole you must use the
\longa (a double breve) and \breve commands. Durations as short as 128th notes may be
specified. Shorter values are possible, but only as beamed notes.

\time 8/1
c\longa c\breve cl c2
c4 c8 cl6 c32 c64 cl128 c128

0

\‘_Vll

O O I() F
I

Here are the same durations with automatic beaming turned off.

\time 8/1

\autoBeamOff

c\longa c\breve cl c2

c4 c8 cl6 c32 c64 c128 c128

0

o o - A

ANV Wl I I / Y/ /1 A U
| | | r 7

A note with the duration of a quadruple breve may be entered with \maxima, but this is
supported only within ancient music notation. For details, see Section 2.8 [Ancient notation],

page 274.
If the duration is omitted, it is set to the previously entered duration. The default for the

first note is a quarter note.
aaa2aadaala

0 |

[#) [@) [@)

N

oJ

To obtain dotted note lengths, place a dot (.) after the duration. Double-dotted notes are
specified by appending two dots, and so on.
a4 b c4. b8 a4. b4.. c8.

. (o —
| | W | 1/
4 | r

U | |

Chapter 1: Musical notation 31

Some durations cannot be represented with just binary durations and dots; they can be
represented only by tying two or more notes together. For details, see [Ties], page 35.

For ways of specifying durations for the syllables of lyrics and ways of aligning lyrics to notes,
see Section 2.1 [Vocal music], page 183.

Optionally, notes can be spaced strictly proportionately to their duration. For details of this
and other settings which control proportional notation, see Section 4.5.5 [Proportional notation],
page 365.

Dots are normally moved up to avoid staff lines, except in polyphonic situations. Predefined
commands are available to force a particular direction manually, for details see Section 5.4.2
[Direction and placement], page 394.

Predefined commands
\autoBeam0ff, \dotsUp, \dotsDown, \dotsNeutral.

See also

Music Glossary: Section “breve” in Music Glossary, Section “longa” in Music Glossary,
Section “maxima” in Music Glossary, Section “note value” in Music Glossary, Section “Duration
names notes and rests” in Music Glossary.

Notation Reference: [Automatic beams|, page 54, [Ties], page 35, [Stems|, page 155,
Section 1.2.1 [Writing rhythms], page 30, Section 1.2.2 [Writing rests], page 37, Section 2.1
[Vocal music], page 183, Section 2.8 [Ancient notation]|, page 274, Section 4.5.5 [Proportional
notation], page 365.

Snippets: Section “Rhythms” in Snippets.

Internals Reference: Section “Dots” in Internals Reference, Section “DotColumn” in Internals
Reference.

Known issues and warnings

There is no fundamental limit to rest durations (both in terms of longest and shortest), but the
number of glyphs is limited: rests from 128th to maxima (8 x whole) may be printed.

Tuplets

Tuplets are made from a music expression by multiplying all the durations with a fraction:
\times fraction { music }

The duration of music will be multiplied by the fraction. The fraction’s denominator will be
printed over or under the notes, optionally with a bracket. The most common tuplet is the
triplet in which 3 notes have the duration of 2, so the notes are 2/3 of their written length.

a2 \times 2/3 { b4 b b }
c4 c \times 2/3 { b4 a g }

—3—
| i

o C 2999 |

]]]
3

>

N

The automatic placement of the tuplet bracket above or below the notes may be overridden
manually with predefined commands, for details see Section 5.4.2 [Direction and placement],
page 394.

Tuplets may be nested:

Chapter 1: Musical notation 32

\autoBeamOff
c4 \times 4/5 { f8 e f \times 2/3 { e[f gl } } f4 |

D)) | |

:)V l L 5 3 1

Modifying nested tuplets which begin at the same musical moment must be done with \tweak.

To modify the duration of notes without printing a tuplet bracket, see [Scaling durations],
page 34.

Predefined commands
\tupletUp, \tupletDown, \tupletNeutral.

Selected Snippets
Entering several tuplets using only one \times command

The property tupletSpannerDuration sets how long each of the tuplets contained within
the brackets after \times should last. Many consecutive tuplets can then be placed within a
single \times expression, thus saving typing.

In the example, two triplets are shown, while \times was entered only once.
For more information about make-moment, see "Time administration".

\relative c' {
\time 2/4
\set tupletSpannerDuration = #(ly:make-moment 1 4)
\times 2/3 { c8 c c c ¢c ¢ }

}

f

) 3 3

J eedeee
Changing the tuplet number

By default, only the numerator of the tuplet number is printed over the tuplet bracket, i.e.,
the denominator of the argument to the \times command. Alternatively, num:den of the tuplet
number may be printed, or the tuplet number may be suppressed altogether.

\relative c'' {
\times 2/3 { c8 c ¢ }
\times 2/3 { c8 c ¢ }
\override TupletNumber #'text = #tuplet-number::calc-fraction-text
\times 2/3 { c8 c ¢ }
\override TupletNumber #'stencil = ##f
\times 2/3 { c8 c ¢ }

¢

Chapter 1: Musical notation 33

Permitting line breaks within beamed tuplets

This artificial example shows how both manual and automatic line breaks may be permitted
to within a beamed tuplet. Note that such off-beat tuplets have to be beamed manually.

\layout {
\context {
\Voice
% Permit line breaks within tuplets
\remove "Forbid_line_break_engraver"
% Allow beams to be broken at line breaks
\override Beam #'breakable = ##t
}
}
\relative c'' {
a8
\repeat unfold 5 { \times 2/3 { c[b al } }
% Insert a manual line break within a tuplet
\times 2/3 { c[b \bar "" \break al] }
\repeat unfold 5 { \times 2/3 { c[b a] } }
c8

!
l

fri

o)
)" 4
%] 3g 3g 35 3g 35

See also

Music Glossary: Section “triplet” in Music Glossary, Section “tuplet” in Music Glossary,
Section “polymetric” in Music Glossary.

Learning Manual: Section “T'weaking methods” in Learning Manual.

Notation Reference: [Time administration|, page 80, [Scaling durations|, page 34,
Section 5.3.4 [The tweak command], page 390, [Polymetric notation], page 48.

Snippets: Section “Rhythms” in Snippets.

Internals Reference: Section “TupletBracket” in Internals Reference, Section “TupletNum-
ber” in Internals Reference, Section “TimeScaledMusic” in Internals Reference.

Known issues and warnings

When the first note on a staff is a grace note followed by a tuplet the grace note must be placed
before the \times command to avoid errors. Anywhere else, grace notes may be placed within
tuplet brackets.

Chapter 1: Musical notation 34

Scaling durations

You can alter the duration of single notes, rests or chords by a fraction N/M by appending *N/M
(or *N if M is 1) to the duration. This will not affect the appearance of the notes or rests
produced, but the altered duration will be used in calculating the position within the measure
and setting the duration in the MIDI output. Multiplying factors may be combined such as
*L*M/N.
In the following example, the first three notes take up exactly two beats, but no triplet

bracket is printed.

\time 2/4

% Alter durations to triplets

a4x2/3 gisd*2/3 a4x2/3

% Normal durations

ad a4

% Double the duration of chord

<a d>4x%2

% Duration of quarter, appears like sixteenth
bl6x4 c4

0 .
e TrAre e =T E s

Y, i 7

The duration of skip or spacing notes may also be modified by a multiplier. This is useful
for skipping many measures, e.g., s1%23.

Longer stretches of music may be compressed by a fraction in the same way, as if every note,
chord or rest had the fraction as a multiplier. This leaves the appearance of the music unchanged
but the internal duration of the notes will be multiplied by the fraction num/den. The spaces
around the dot are required. Here is an example showing how music can be compressed and
expanded:

\time 2/4

% Normal durations

<c a>4 c8 a

% Scale music by *2/3

\scaleDurations #'(2 . 3) {
<c a f>4. c8 a f

}

% Scale music by *2

\scaleDurations #'(2 . 1) {
<c' a>4 c8 b

¢
l

One application of this command is in polymetric notation, see [Polymetric notation], page 48.

See also

Notation Reference: [Tuplets], page 31, [Invisible rests], page 39, [Polymetric notation],
page 48.
Snippets: Section “Rhythms” in Snippets.

Chapter 1: Musical notation 35

Ties

A tie connects two adjacent note heads of the same pitch. The tie in effect extends the duration
of a note.

Note: Ties should not be confused with slurs, which indicate articula-
tion, or phrasing slurs, which indicate musical phrasing. A tie is just a
way of extending a note duration, similar to the augmentation dot.

A tie is entered using the tilde symbol ~

a2 7 a
n | |
)’ 4 | |
B (o . —
oJ

Ties are used either when the note crosses a bar line, or when dots cannot be used to denote the
rhythm. Ties should also be used when note values cross larger subdivisions of the measure:
\relative c¢' {
r8 c8 7 c2 r4d |
r8 "not" c2 7 c8 r4

}
[not
)" 4 N N
4\ o & rd & £
[[an Y W] / [1 [y
() o5 s @

If you need to tie many notes across bar lines, it may be easier to use automatic note splitting,
see [Automatic note splitting], page 51. This mechanism automatically splits long notes, and
ties them across bar lines.

When a tie is applied to a chord, all note heads whose pitches match are connected. When
no note heads match, no ties will be created. Chords may be partially tied by placing the tie
inside the chord.

<c e g>" <ceg>
<c”" e g” b> <c e g b>

When a second alternative of a repeat starts with a tied note, you have to specify the repeated
tie as follows:

\repeat volta 2 { c g <c e>2 ~ }

\alternative {
% First alternative: following note is tied normally
{ <c e>2. r4 }
% Second alternative: following note has a repeated tie
{ <c e>2\repeatTie d4 c } }

[1 Il 2

n 7] 0 N | |
7 s rAEK | | 7] ’ F
~—F ﬂ .=v I |

U ! |

Chapter 1: Musical notation 36

L.v. ties (laissez vibrer) indicate that notes must not be damped at the end. It is used in
notation for piano, harp and other string and percussion instruments. They can be entered as
follows:

<c f g>1\laissezVibrer

0

) 4

~

¢ o

~—

The vertical placement of ties may be controlled, see Predefined commands, or for details,
see Section 5.4.2 [Direction and placement], page 394.

Solid, dotted or dashed ties may be specified, see Predefined commands.

Predefined commands
\tieUp, \tieDown, \tieNeutral, \tieDotted, \tieDashed, \tieSolid.

Selected Snippets
Using ties with arpeggios

Ties are sometimes used to write out arpeggios. In this case, two tied notes need not be
consecutive. This can be achieved by setting the tieWaitForNote property to #t. The same

feature is also useful, for example, to tie a tremolo to a chord, but in principle, it can also be
used for ordinary consecutive notes.

\relative c' {
\set tieWaitForNote = ##t
\grace { c16["~ e “ gl 7 } <c, e g>2
\repeat tremolo 8 { c32 " ¢' ~ } <c ¢,>1
e8 " c T a~"f " <e'caif>2
\tieUp
c8 7 a
\tieDown
\tieDotted
g8 ~ c g2

0 Z o ,
== 7. (@) —V7 o
fes Ui 7] p=
A3V o 7 —
JJ 4 -4 4 o =
N~———— ~——

Engraving ties manually

Ties may be engraved manually by changing the tie-configuration property of the
TieColumn object. The first number indicates the distance from the center of the staff in
staff-spaces, and the second number indicates the direction (1 = up, -1 = down).

\relative c' {
<c e g>»2 " <c e g>
\override TieColumn #'tie-configuration =
#'((0.0 . 1) (-2.0 . 1) (4.0 . 1))
<c e g>" <ce g>

}

Chapter 1: Musical notation 37

() .

X—r—1—] 1

S e~ I R P —

[Y) Z—& &g &
See also

Music Glossary: Section “tie” in Music Glossary, Section “laissez vibrer” in Music Glossary.
Notation Reference: [Automatic note splitting], page 51.
Snippets: Section “Rhythms” in Snippets.

Internals Reference: Section “LaissezVibrerTie” in Internals Reference, Section “LaissezVi-
brerTieColumn” in Internals Reference, Section “TieColumn” in Internals Reference, Section
“Tie” in Internals Reference.

Known issues and warnings

Switching staves when a tie is active will not produce a slanted tie.

Changing clefs or octavations during a tie is not really well-defined. In these cases, a slur
may be preferable.

1.2.2 Writing rests

Rests are entered as part of the music in music expressions.

Rests

Rests are entered like notes with the note name r. Durations longer than a whole rest use the
predefined commands shown:

\new Staff {
% These two lines are just to prettify this example
\time 16/1
\override Staff.TimeSignature #'stencil = ##f
% Print a maxima rest, equal to four breves
r\maxima
% Print a longa rest, equal to two breves
r\longa
% Print a breve rest
r\breve
rl r2 r4 r8 r16 r32 r64 ri128

0

"4
7\
[arY
AN\1VJ

oJ

\
0 | | | - 7]
| | - S i

—~

7

~ele
~££!
—tielelo|y

]
of
|

)
T

Whole measure rests, centered in the middle of the measure, must be entered as multi-measure
rests. They can be used for a single measure as well as many measures and are discussed in [Full
measure rests|, page 40.

To explicitly specify a rest’s vertical position, write a note followed by \rest. A rest of the
duration of the note will be placed at the staff position where the note would appear. This allows
for precise manual formatting of polyphonic music, since the automatic rest collision formatter
will not move these rests.

a4\rest d4\rest

Chapter 1: Musical notation

Selected Snippets

Rest styles

Rests may be used in various styles.
\layout {

¥

indent = 0.0
\context {
\Staff
\remove "Time_signature_engraver"

}

\new Staff \relative c {

\cadenzaOn

\override Staff.Rest #'style = #'mensural
r\maxima”\markup \typewriter { mensural }
r\longa r\breve rl r2 r4 r8 ri16 s32 s64 s128
\bar nn

\override Staff.Rest #'style = #'neomensural
r\maxima”\markup \typewriter { neomensural }
r\longa r\breve rl r2 r4 r8 ri16 s32 s64 s128
\bar nn

\override Staff.Rest #'style = #'classical
r\maxima”\markup \typewriter { classical }
r\longa r\breve rl r2 r4 r8 ri16 r32 r64 ri28
\bar nn

\override Staff.Rest #'style = #'default
r\maxima~\markup \typewriter { default }

s128

s128

s128

r\longa r\breve rl r2 r4 r8 ri16 r32 r64 ri128 s128

f\ mensural

)(I I I L] 1 r A £]
[farY 1 1

SV

oJ

fy neomensural
/\

)" 4
11 |

fy classical
/\

e

"4
| |
[FanY | | |

e

~Nele

~L££

—tielel

—tielel|y

fy default
/\

und

e

~ele

~{gg

—tielely

—tieleloly

38

Chapter 1: Musical notation 39

See also

Music Glossary: Section “breve” in Music Glossary, Section “longa” in Music Glossary,
Section “maxima” in Music Glossary.

Notation Reference: [Full measure rests|, page 40.

Snippets: Section “Rhythms” in Snippets.

Internals Reference: Section “Rest” in Internals Reference.

Known issues and warnings

There is no fundamental limit to rest durations (both in terms of longest and shortest), but the
number of glyphs is limited: there are rests from 128th to maxima (8 x whole).

Invisible rests

An invisible rest (also called a ‘spacer rest’) can be entered like a note with the note name s:

cd csc
s2 ¢

Spacer rests are available only in note mode and chord mode. In other situations, for example,
when entering lyrics, \skip is used to skip a musical moment. \skip requires an explicit
duration.

<<
{
a2 \skip2 a2 a2
}
\new Lyrics {
\lyricmode {
foo2 \skip 1 bla2

}
}
>>

n | | |

)" 4 | | |
/\ y £) | | |
U 7 7 7
ANV

[Y)

foo bla

A spacer rest implicitly causes Staff and Voice contexts to be created if none exist, just
like notes and rests do:

sl s s

N &/

P

\skip simply skips musical time; it creates no output of any kind.

% This is valid input, but does nothing
\skip 1 \skipl \skip 1

Chapter 1: Musical notation 40

See also
Snippets: Section “Rhythms” in Snippets

Internals Reference: Section “SkipMusic” in Internals Reference

Full measure rests
Rests for one or more full measures are entered like notes with the note name uppercase R:

% Rest measures contracted to single measure
\compressFullBarRests

R1x4

R1x24

R1x4

b27"Tutti" b4 a4

N 4 24 4 Tutti |

)" 4

r @) | | | | P o
[[YA W | | I 1 | | | e
Si —

The duration of full-measure rests is identical to the duration notation used for notes. The
duration in a multi-measure rest must always be an integral number of measure-lengths, so
augmentation dots or fractions must often be used:

\compressFullBarRests
\time 2/4

R1 | R2 |

\time 3/4

R2. | R2.%2 |

\time 13/8

R1%13/8 | R1%*13/8%12 |
\time 10/8

R4x*5%4 |

oo) B 3 —— -
-%?Pﬂi % o)

M

A full-measure rest is printed as either a whole or breve rest, centered in the measure,
depending on the time signature.

\time 4/4
R1 |
\time 6/4
R1x3/2 |
\time 8/4
R1%x2 |

"4 0o QL

4\ o == A0) - [) | |
(o Y W]) A

ANV x X

oJ

—~

By default a multi-measure rest is expanded in the printed score to show all the rest measures
explicitly. Alternatively, a multi-measure rest can be shown as a single measure containing a
multi-measure rest symbol, with the number of measures of rest printed above the measure:

Chapter 1: Musical notation 41

% Default behavior

\time 3/4 r2. | R2.*2 |
\time 2/4 R2 |

\time 4/4

% Rest measures contracted to single measure
\compressFullBarRests

ri | R1*17 | Ri1x4 |

% Rest measures expanded
\expandFullBarRests
\time 3/4

R2.%2 |

0 17 4

i

i
R

i

@

i

Markups can be added to multi-measure rests. The predefined command \fermataMarkup
is provided for adding fermatas.

\compressFullBarRests

\time 3/4

R2.%10"\markup { \italic "ad lib." }
R2."\fermataMarkup

ad lib.
f\ 10 ~
A —F =]
QQJ@ q | W |

Note: Markups attached to a multi-measure rest are objects of type
MultiMeasureRestText, not TextScript. Overrides must be directed
to the correct object, or they will be ignored. See the following example.

% This fails, as the wrong object name is specified
\override TextScript #'padding = #5

R17"wrong"

% This is correct and works

\override MultiMeasureRestText #'padding = #5

R1~"right"
right
fA Wwrong
[[av Y
ANV
[y}

When a multi-measure rest immediately follows a \partial setting, resulting bar-check warn-
ings may not be displayed.
Predefined commands

\textLengthOn, \textLengthOff, \fermataMarkup, \compressFullBarRests,
\expandFullBarRests.

Chapter 1: Musical notation 42

Selected Snippets

Changing form of multi-measure rests

If there are ten or fewer measures of rests, a series of longa and breve rests (called in German
"Kirchenpausen" - church rests) is printed within the staff; otherwise a simple line is shown.
This default number of ten may be changed by overriding the expand-1imit property.

\relative c'' {
\compressFullBarRests
R1%2 | R1*5 | R1%9
\override MultiMeasureRest #'expand-limit = #3
R1x2 | R1x5 | R1%9

}
0 2 5 9 2 5 9
5 R

Positioning multi-measure rests

Unlike ordinary rests, there is no predefined command to change the staff position of a multi-
measure rest symbol of either form by attaching it to a note. However, in polyphonic music
multi-measure rests in odd-numbered and even-numbered voices are vertically separated. The
positioning of multi-measure rests can be controlled as follows:

\relative c'' {
% Multi-measure rests by default are set under the fourth line
R1
% They can be moved with an override
\override MultiMeasureRest #'staff-position = #-2
R1
% A value of O is the default position;
% the following trick moves the rest to the center line
\override MultiMeasureRest #'staff-position = #-0.01
R1
% Multi-measure rests in odd-numbered voices are under the top line
<< {R1}\\{at} >
% Multi-measure rests in even-numbered voices are under the bottom line
<< {ctF\\{RL} >
% They remain separated even in empty measures
<< { Rl }\\ {R1l} >
% This brings them together even though there are two voices
\compressFullBarRests

<<
\revert MultiMeasureRest #'staff-position
{ R1x3 }
\\
\revert MultiMeasureRest #'staff-position
{ R1*3 }

>>

b
0 3
ﬁ- = O - | L

[{a Y L (@]
SP —

Chapter 1: Musical notation 43

Multi-measure rest markup

Markups attached to a multi-measure rest will be centered above or below it. Long markups
attached to multi-measure rests do not cause the measure to expand. To expand a multi-measure
rest to fit the markup, use a spacer rest with an attached markup before the multi-measure rest.

Note that the spacer rest causes a bar line to be inserted. Text attached to a spacer rest in
this way is left-aligned to the position where the note would be placed in the measure, but if
the measure length is determined by the length of the text, the text will appear to be centered.

\relative c' {
\compressFullBarRests

\textLengthOn

s1*0~\markup { [MAJOR GENERAL] }

R1%19

s1*0_\markup { \italic { Cue: ... it is yours } }

s1*0"\markup { A }
R1*30"\markup { [MABEL] }
\textLengthOff

c4"\markup { CHORUS } d f c

}
[MAJOR GENERAL] [MABEL]
0 19 A 30 CHORUS
o —= :
o . . '
v Cue: ... it is yours ® -
See also

Music Glossary: Section “multi-measure rest” in Music Glossary.

Notation Reference: [Durations], page 30, Section 1.8 [Text], page 159, Section 1.8.2 [For-
matting text], page 167, [Text scripts|, page 160.

Snippets: Section “Rhythms” in Snippets.

Internals Reference: Section “MultiMeasureRest” in Internals Reference, Section “MultiMea-
sureRestNumber” in Internals Reference, Section “MultiMeasureRestText” in Internals Refer-
ence.

Known issues and warnings

If an attempt is made to use fingerings (e.g., R1*10-4) to put numbers over multi-measure rests,
the fingering numeral (4) may collide with the bar counter numeral (10).

There is no way to automatically condense multiple ordinary rests into a single multi-measure
rest.

Multi-measure rests do not take part in rest collisions.
1.2.3 Displaying rhythms

Time signature
The time signature is set as follows:

\time 2/4 c2
\time 3/4 c2.

Chapter 1: Musical notation 44

0)

) A) 3

@ Z l(l e 7
[y, |

Time signatures are printed at the beginning of a piece and whenever the time signature
changes. If a change takes place at the end of a line a warning time signature sign is printed
there. This default behavior may be changed, see Section 5.4.6 [Visibility of objects], page 400.

\time 2/4
c2 c
\break
cc
\break
\time 4/4
cccec

A
TR
\

G

TN
TN
n

P

G
@
TR
TR
TR

P
|
|

The time signature symbol that is used in 2/2 and 4/4 time can be changed to a numeric
style:

% Default style

\time 4/4 cl

\time 2/2 ci

% Change to numeric style
\numericTimeSignature
\time 4/4 c1

\time 2/2 cl

% Revert to default style
\defaultTimeSignature
\time 4/4 c1

\time 2/2 c1

s O {le O % [Q)] A O ') O r(D) [@)
Z

G e
-

Mensural time signatures are covered in [Mensural time signatures|, page 279.

Predefined commands

\numericTimeSignature, \defaultTimeSignature.

Chapter 1: Musical notation 45

Selected Snippets

Changing the time signature without affecting the beaming

The \time command sets the properties timeSignatureFraction, beatLength,
beatGrouping and measureLength in the Timing context, which is normally aliased to Score.
Changing the value of timeSignatureFraction causes the new time signature symbol to be
printed without changing any of the other properties:

\relative c'' {
\time 3/4
al6 aaaaaaaaaaa

% Change time signature symbol but keep 3/4 beaming
% due to unchanged underlying time signature

\set Score.timeSignatureFraction = #'(12 . 16)

al6 aaaaaaaaaaa

\time 12/16
% Lose 3/4 beaming now \time has been changed
al6 aaaaaaaaaaa

>

o oI

¢

G

G

Compound time signatures

Odd 20th century time signatures (such as "5/8") can often be played as compound time
signatures (e.g. "3/8 + 2/8"), which combine two or more inequal metrics. LilyPond can make
such music quite easy to read and play, by explicitly printing the compound time signatures and
adapting the automatic beaming behavior. (Graphic measure grouping indications can also be
added; see the appropriate snippet in this database.)

#(define ((compound-time one two num) grob)
(grob-interpret-markup grob
(markup #:override '(baseline-skip . 0) #:number
(#:1line (
(#:column (one num))
#:vcenter "+"
(#:column (two num)))))))

\relative c' {
\override Staff.TimeSignature #'stencil = #(compound-time "2" "3" "8")

Chapter 1: Musical notation 46

\time 5/8

#(override-auto-beam-setting '(end 1 8 5 8) 1 4)
c8 d e fis gis

c8 fis, gis e d

c8 d e4 gis8

}
n |
T ———— T . — .
+ r_; ﬁ!l - — jm— g,)
[Y) & & '
See also

Music Glossary: Section “time signature” in Music Glossary
Notation Reference: [Mensural time signatures], page 279, [Time administration], page 80.
Snippets: Section “Rhythms” in Snippets.

Internals Reference: Section “TimeSignature” in Internals Reference, Section
“Timing_translator” in Internals Reference.

Upbeats

Partial or pick-up measures, such as an anacrusis or upbeat, are entered using the \partial
command, with the syntax

\partial duration

where duration is the rhythmic length of the interval before the start of the first complete
measure:

\partial 4 e4 |
a2. c,4 |

n__ e
&€ s
¢

The partial measure can be any duration less than a full measure:

\partial 8*3 c8 d e |
a2. c,4 |

0
e .
JJ

Internally, this is translated into
\set Timing.measurePosition = -duration

The property measurePosition contains a rational number indicating how much of the
measure has passed at this point. Note that this is set to a negative number by the \partial
command: i.e., \partial 4 is internally translated to -4, meaning “there is a quarter note left
in the measure.”

Chapter 1: Musical notation 47

See also
Music Glossary: Section “anacrusis” in Music Glossary.
Notation Reference: [Grace notes|, page 75.
Snippets: Section “Rhythms” in Snippets.

Internal Reference: Section “Timing_translator” in Internals Reference.

Known issues and warnings

The \partial command is intended to be used only at the beginning of a piece. If you use it
after the beginning, some odd warnings may occur.

Unmetered music

Bar lines and bar numbers are calculated automatically. For unmetered music (some cadenzas,
for example), this is not desirable. To turn off automatic calculation of bar lines and bar
numbers, use the command \cadenzaOn, and use \cadenzaOff to turn them on again.

cd ded
\cadenzalOn

c4 c d8 d d f4 g4.
\cadenzaOff

\bar "|"

dd e d c

n X
o7 o ——
/ 1 1 I
ANV | | | I — I

e) | | | |

Bar numbering is resumed at the end of the cadenza as if the cadenza were not there:

% Show all bar numbers

\override Score.BarNumber #'break-visibility = #all-visible
cd ded

\cadenzalOn

c4d c d8 d d f4 g4.

\cadenzaOff

\bar "|"

dd e d c

f\ 2 ..2 3

] 1 T 1 |
I I N S 1

_\]
e) | | | ! |

Predefined commands

\cadenzaOn, \cadenzaOff.

See also
Music Glossary: Section “cadenza” in Music Glossary.
Notation Reference: Section 5.4.6 [Visibility of objects], page 400.
Snippets: Section “Rhythms” in Snippets.

Chapter 1: Musical notation 48

Known issues and warnings

LilyPond will insert line breaks and page breaks only at a bar line. Unless the unmetered music
ends before the end of the staff line, you will need to insert invisible bar lines with

\bar nn

to indicate where breaks can occur.

Polymetric notation

Polymetric notation is supported, either explicitly or by modifying the visible time signature
symbol and scaling the note durations.

Staves with different time signatures, equal measure lengths

This notation can be created by setting a common time signature for each staff but replacing
the symbol manually by setting timeSignatureFraction to the desired fraction and scaling the
printed durations in each staff to the common time signature; see [Time signature], page 43.
The scaling is done with \scaleDurations, which is used in a similar way to \times, but does
not create a tuplet bracket; see [Scaling durations], page 34.

In this example, music with the time signatures of 3/4, 9/8, and 10/8 are used in parallel.
In the second staff, shown durations are multiplied by 2/3, as 2/3 * 9/8 = 3/4, and in the third
staff, shown durations are multiplied by 3/5, as 3/5 * 10/8 = 3/4. It will often be necessary to
insert beams manually, as the duration scaling affects the autobeaming rules.

\relative c' <<
\new Staff {
\time 3/4
cd c c |
ccec |
}
\new Staff {
\time 3/4
\set Staff.timeSignatureFraction
\scaleDurations #'(2 . 3)
\repeat unfold 6 { c8[c c] }
}
\new Staff {
\time 3/4
\set Staff.timeSignatureFraction
\scaleDurations #'(3 . 5) {
\repeat unfold 2 { c8[c c] }
\repeat unfold 2 { c8[c] } |
cd. c4. \times 2/3 { c8[c c] } c4

#'(09 . 8

#'(10 . 8)

}

>>

Chapter 1: Musical notation 49

M

e U AP
0 ol

Staves with different time signatures, unequal bar lengths

Each staff can be given its own independent time signature by moving the Timing_
translator and the Default_bar_line_engraver to the Staff context.

\layout {

\context {
\Score
\remove "Timing_translator"
\remove "Default_bar_line_engraver"

}

\context {
\Staff
\consists "Timing_translator"
\consists "Default_bar_line_engraver"

}
}

% Now each staff has its own time signature.

\relative c' <<
\new Staff {
\time 3/4
c4 c c |
ccec |

}

\new Staff {
\time 2/4
c4 c |
cc |
cc |

}

\new Staff {
\time 3/8
c4d. |
c8 c c |
c4d. |
c8 c c |

>>

Chapter 1: Musical notation 50

DO U

0

;

¢
)
¢
¢
¢
)

[
I

o° - -dl-oIL -

s @
o
o]
o/l

Selected Snippets

Compound time signatures

Odd 20th century time signatures (such as "5/8") can often be played as compound time
signatures (e.g. "3/8 + 2/8"), which combine two or more inequal metrics. LilyPond can make
such music quite easy to read and play, by explicitly printing the compound time signatures and
adapting the automatic beaming behavior. (Graphic measure grouping indications can also be
added; see the appropriate snippet in this database.)

#(define ((compound-time one two num) grob)
(grob-interpret-markup grob
(markup #:override '(baseline-skip . 0) #:number
(#:1ine (
(#:column (one num))
#:vcenter "+"
(#:column (two num)))))))

\relative c' {
\override Staff.TimeSignature #'stencil = #(compound-time "2" "3" "8")
\time 5/8
#(override-auto-beam-setting '(end 1 8 5 8) 1 4)
c8 d e fis gis
c8 fis, gis e d

c8 d e4 gis8
}
()
23— T, e — — 1
[Y) -d-a & '
See also

Music Glossary: Section “polymetric” in Music Glossary, Section “polymetric time signa-
ture” in Music Glossary, Section “meter” in Music Glossary.

Notation Reference: [Time signature], page 43, [Scaling durations], page 34.

Snippets: Section “Rhythms” in Snippets.

Internals Reference: Section “TimeSignature” in Internals Reference, Section “Tim-
ing_translator” in Internals Reference, Section “Default_bar_line_engraver” in Internals
Reference, Section “Staff” in Internals Reference.

Known issues and warnings

When using different time signatures in parallel, notes at the same moment will be be placed at
the same horizontal location. However, the bar lines in the different staves will cause the note
spacing to be less regular in each of the individual staves than would be normal without the
different time signatures.

Chapter 1: Musical notation 51

Automatic note splitting

Long notes which overrun bar lines can be converted automatically to tied notes. This is done by
replacing the Note_heads_engraver with the Completion_heads_engraver. In the following
example, notes crossing the bar lines are split and tied.

\new Voice \with {
\remove "Note_heads_engraver"
\consists "Completion_heads_engraver"

}

{c2. cBd4defgabc8c2bdagléfdedc8. c2}

I(‘\) Y) i N 7] | I&

fen—C— o N e \

\\3Y, | — =" 7 | e

ryj 2 o 9_o | 1 | =
5

N

£)

~ P

This engraver splits all running notes at the bar line, and inserts ties. One of its uses is to
debug complex scores: if the measures are not entirely filled, then the ties show exactly how
much each measure is off.

See also

Music Glossary: Section “tie” in Music Glossary

Learning Manual: Section “Engravers explained” in Learning Manual, Section “Adding and
removing engravers” in Learning Manual.

Snippets: Section “Rhythms” in Snippets.

Internals Reference: Section “Note_heads_engraver” in Internals Reference, Section “Comple-
tion_heads_engraver” in Internals Reference, Section “Forbid_line_break_engraver” in Internals
Reference.

Known issues and warnings

Not all durations (especially those containing tuplets) can be represented exactly with normal
notes and dots, but the Completion_heads_engraver will not insert tuplets.

The Completion_heads_engraver only affects notes; it does not split rests.

Showing melody rhythms

Sometimes you might want to show only the rhythm of a melody. This can be done with the
rhythmic staff. All pitches of notes on such a staff are squashed, and the staff itself has a single
line
<<
\new RhythmicStaff {
\new Voice = "myRhythm" {
\time 4/4
c4 e8 f g2
r4dggt
gl
}

Chapter 1: Musical notation 52

}
\new Lyrics {
\lyricsto "myRhythm" {
This is my song
I like to sing
}

}
>>

eddddpdddie |

This is my song I liketo sing

Guitar chord charts often show the strumming rhythms. This can be done with the Pitch_
squash_engraver and \improvisationOn.

<<
\new ChordNames {
\chordmode {
clfgec
}
}

\new Voice \with {

\consists Pitch_squash_engraver
} \relative c'' {

\improvisationOn

c4 c8 c c4 c8 ¢

f4 £8 £ f4 £8 £

g4 g8 ggigdg

c4 c8 c cd c8 c

>>
"4
N (o J J J J J J1J J J J J J\J J J J J 17 J J J J /7
SOl AL AL AL OO L
[Y) I e L L o L e e e e e e |

Predefined commands

\improvisationOn, \improvisationOff.

Selected Snippets
Guitar strum rhythms

For guitar music, it is possible to show strum rhythms, along with melody notes, chord names
and fret diagrams.
\include "predefined-guitar-fretboards.ly"
<<
\new ChordNames {
\chordmode {
clfgec

Chapter 1: Musical notation

}
}
\new FretBoards {
\chordmode {
clfgec
}
}
\new Voice \with {
\consists "Pitch_squash_engraver"
Ao
\relative c'' {
\improvisationOn
c4 c8 c c4 c8 ¢
f4 f8 £ f4 £8 £
g4 g8 g gdgdg
c4 c8 c c4 c8 ¢
+
}
\new Voice = "melody" {
\relative c'' {
c2 ed e4
f2. r4
g2. a4
ed c2.
b
}
\new Lyrics {
\lyricsto "melody" {
This is my song.
I like to sing.

}
}
>>
X (O ¢] 000
32 1 134211 21
f
/\ r) y 4 d J 7 y A 4 y A d J 7 y 4 y A y 4 y 4
S i G S G 1 ———— ————F
o e N S N
o o 2 .I'.
A ¢ 7 7 d |
[farY 7| [!
ANV |
U I
This is my song. I like

53

Chapter 1: Musical notation 54

to sing.

See also
Snippets: Section “Rhythms” in Snippets.

Internals Reference: Section “RhythmicStaff” in Internals Reference, Section
“Pitch_squash_engraver” in Internals Reference.

1.2.4 Beams

Automatic beams

By default, beams are inserted automatically:

\time 2/4 c8 c c ¢
\time 6/8 ¢ ¢ ¢ c8. cl16 c8

| | | [| |
I |

If these automatic decisions are not satisfactory, beaming can be entered explicitly; see
[Manual beams|, page 65. Beams must also be entered manually in the same way if beams are
to be extended over rests.

It is possible to define beaming patterns that differ from the defaults. The default beaming
rules for most common time signatures are defined in ‘scm/auto-beam.scm’. If there are no
beaming rules defined for a particular beam’s duration in the time signature being used, its
beaming is controlled by the values of three context properties, measurelLength, beatLength
and beatGrouping. Both the beaming rules and the context properties can be overridden, see
[Setting automatic beam behavior], page 56.

Note: If beams are used to indicate melismata in songs, then automatic beaming should be
switched off with \autoBeamOff and the beams indicated manually.

Automatic beaming may be turned off and on with \autoBeam0ff and \autoBeamOn commands:

c4 c8 c8. c16 c8. cl16 c8
\autoBeamOff

c4 c8 c8. cl6 c8.
\autoBeam0On

cl6 c8

p—
N (¢4

i

<~
4
~—

G

o/
o/

Chapter 1: Musical notation 55

Predefined commands

\autoBeam0ff, \autoBeam0n.

Selected Snippets
Beams across line breaks

Line breaks are normally forbidden when beams cross bar lines. This behavior can be changed
as shown:

\relative c'' {
\override Beam #'breakable = #i#t
c8 cl[c] cl[c] cl[c] c[\break
c8] cl[c] cl c] cl c] ¢

}
o)
SV . I/ —1
U r — —
2 f
ANV | | | 1/
e) T ——

Changing beam knee gap

Kneed beams are inserted automatically when a large gap is detected between the note heads.
This behavior can be tuned through the auto-knee-gap property. A kneed beam is drawn if
the gap is larger than the value of auto-knee-gap plus the width of the beam object (which
depends on the duration of the notes and the slope of the beam). By default auto-knee-gap is
set to 5.5 staff spaces.

{
f8 £''8 £8 £''8
\override Beam #'auto-knee-gap = #6
f8 £''8 £8 £''8

}
ts—C I |
ANV
v =+ g I o
@ @ L g @
See also

Notation Reference: [Manual beams|, page 65, [Setting automatic beam behavior|, page 56.
Installed Files: ‘scm/auto-beam.scm’.
Snippets: Section “Rhythms” in Snippets.

Internals Reference: Section “Beam” in Internals Reference.

Chapter 1: Musical notation 56

Known issues and warnings

Automatically kneed cross-staff beams cannot be used together with hidden staves. See [Hiding
staves|, page 134.

Beams can collide with note heads and accidentals in other voices

Setting automatic beam behavior

The placement of automatic beams is determined by the rules described in [Automatic beams],
page 54. There are two mutually exclusive ways in which these rules may be modified. The
first, modifying the grouping of beats, applies to uncommon time signatures, i.e. those for which
there are no predefined rules defining the beam end points. The second method, modifying the
specification of the beam end points, can be used for any time signature. This second method
must be used for those time signatures and beam durations combinations for which beam ending
rules are pre-defined, unless these have all been reverted. There are predefined rules for time
signatures of 3/2, 3/4, 4/4, 2/4, 4/8, 4/16, 6/8, 9/8 and 12/8.

Modifying the grouping of beats

If there are no beam-ending rules defined for the beam duration of a particular beam in the
time signature in use, its beaming is controlled by three context properties: measureLength,
beatLength and beatGrouping. These properties may be set in the Score, Staff or Voice

contexts to delimit their scope. The default values are set while processing \time commands,
so the \set commands must be placed after all \time commands.

These determine the beaming as follows:

Beams may begin anywhere (unless a beam is already active). Beams end at a time deter-
mined by the values of beatGrouping and beatLength, as follows:

e If beatGrouping and beatLength are consistent with measurelLength, beatGrouping is
used to determine the end points of beams.

e If beatGrouping and beatLength are inconsistent with measureLength, beatLength is
used to determine the end points of beams.

Note: These three properties become effective for a particular beam only if there are no beam-
ending rules predefined for that beam’s duration in the time signature in use, or if these beam-
ending rules have all been reverted.

By default the measureLength and beatLength are derived from the time signature set by
the \time command. The measureLength is set to be exactly the same length as the measure
length given by the time signature, and the beatLength is set to be the same as one over the
denominator of the time signature.

The default value of beatGrouping is taken from a table in ‘scm/music-functions.scm’.
To find this, see Section “Other sources of information” in Learning Manual. It defines the beat
grouping for 5/8, 6/8, 8/8, 9/8 and 12/8 time signatures.

Both measureLength and beatLength are moments, units of musical duration. A quantity of
type moment is created by the scheme function ly:make-moment. For more information about
this function, see [Time administration|, page 80.

beatGrouping is a list of integers giving the number of beats in each group.

Selected Snippets
Grouping beats
Beaming patterns may be altered with the beatGrouping property:

Chapter 1: Musical notation 57

\relative c'' {
\time 5/16
#(override-auto-beam-setting '(end * * 5 16) 5 16)
\set beatGrouping = #'(2 3)
c87"(2+3)" c16 c8
\set beatGrouping = #'(3 2)
c87"(3+2)" c16 c8

o) (2+3) (3+2)

NV XU

Specifying context with beatGrouping

By specifying the context, the effect of beatGrouping can be limited to the context specified,
and the values which may have been set in higher-level contexts can be overridden. The \set
commands must be placed after all \time commands:

\score {
\new Staff <<
\time 7/8
\new Voice {
\relative c'' {
\set Staff.beatGrouping = #'(2 3 2)
a8 a aaaaa
}
}
\new Voice {
\relative c' {
\voiceTwo
\set beatGrouping = #'(1 3 3)
f8f ffff £

>>

>

Using beatLength and beatGrouping

The property measureLength determines where bar lines should be inserted and, with
beatLength and beatGrouping, how automatic beams should be generated for beam dura-
tions and time signatures for which no beam-ending rules are defined. This example shows
several ways of controlling beaming by setting these properties. The explanations are shown as
comments in the code.

\relative c'' {
\time 3/4
% The default in 3/4 time is to beam in three groups

Chapter 1: Musical notation 58

% each of a quarter note length
al6 aaaaaaaaaaa

\time 12/16
% No auto-beaming is defined for 12/16
al6 aaaaaaaaaaa

\time 3/4

% Change time signature symbol, but retain underlying 3/4 beaming
\set Score.timeSignatureFraction = #'(12 . 16)

al6 aaaaaaaaaaa

% The 3/4 time default grouping of (1 1 1) and beatLength of 1/8
% are not consistent with a measurelLength of 3/4, so the beams

% are grouped at beatLength intervals

\set Score.beatLength = #(ly:make-moment 1 8)

al6 aaaaaaaaaaa

% Specify beams in groups of (3 3 2 3) 1/16th notes

% 3+3+2+3=11, and 11%1/16<>3/4, so beatGrouping does not apply,
% and beams are grouped at beatLength (1/16) intervals

\set Score.beatLength = #(ly:make-moment 1 16)

\set Score.beatGrouping = #'(3 3 2 3)

al6 aaaaaaaaaaa

% Specify beams in groups of (3 4 2 3) 1/16th notes

% 3+4+2+3=12, and 12%1/16=3/4, so beatGrouping applies
\set Score.beatLength = #(ly:make-moment 1 16)

\set Score.beatGrouping = #'(3 4 2 3)

al6 aaaaaaaaaaa

S
>

¢

G

1l

Sub-dividing beams

Chapter 1: Musical notation 59

The beams of consecutive 16th (or shorter) notes are, by default, not sub-divided. That is, the
three (or more) beams stretch unbroken over entire groups of notes. This behavior can be mod-
ified to sub-divide the beams into sub-groups by setting the property subdivideBeams. When
set, multiple beams will be sub-divided at intervals defined by the current value of beatLength
by reducing the multiple beams to just one beam between the sub-groups. Note that beatLength
defaults to one over the denominator of the current time signature if not set explicitly. It must
be set to a fraction giving the duration of the beam sub-group using the make-moment function,
as shown here:

\relative c'' {
c32[ccccccc]

\set subdivideBeams = ##t
c32[cccccccl

% Set beam sub-group length to an eighth note
\set beatLength = #(ly:make-moment 1 8)
c32[cccccccl

% Set beam sub-group length to a sixteenth note
\set beatLength = #(ly:make-moment 1 16)
c32[cccccccl

0

ANV

oJ

/

Conducting signs, measure grouping signs

Options to group beats within a bar are available through the Scheme function set-time-
signature, which takes three arguments: the number of beats, the beat length, and the internal
grouping of beats in the measure. If the Measure_grouping_engraver is included, the function
will also create MeasureGrouping signs. Such signs ease reading rhythmically complex modern
music. In the example, the 9/8 measure is subdivided in 2, 2, 2 and 3. This is passed to
set-time-signature as the third argument: '(2 2 2 3):

\score {
\relative c'' {
#(set-time-signature 9 8 '(2 2 2 3))

#(revert-auto-beam-setting '(end * * 9 8) 3 8)

#(override-auto-beam-setting '(end 1 8 9 8) 1 4)
#(override-auto-beam-setting '(end 1 8 9 8) 2 4)
#(override-auto-beam-setting '(end 1 8 9 8) 3 4)

g8 gddgeg al bes g) |
#(set-time-signature 5 8 '(3 2))
ad. g4
b
\layout {
\context {
\Staff
\consists "Measure_grouping_engraver"
b
b

Chapter 1: Musical notation 60

}

R N AN
o) ' .
:\Jd||] :Q: —

Modifying the beam end points

In common time signatures, automatic beams can start on any note but can end at
only a few positions within the measure, namely at durations specified by the properties in
autoBeamSettings. These properties consist of a list of rules defining where beams can end.
The default autoBeamSettings rules are defined in ‘scm/auto-beam.scm’. To find this, see
Section “Other sources of information” in Learning Manual.

This method must be used for the time signatures for which beam-ending rules are defined by
default, unless these have all been reverted. It is also particularly suitable for many other time
signatures if the time signature of the measures changes frequently, or if the beaming should be
different for different beam durations.

In order to add a rule to the list, use

#(override-auto-beam-setting
' (beam-1limit
beam-numerator beam-denominator
time-signature-numerator time-signature-denominator)
moment-numerator moment-denominator [context])

where

e beam-limit is the type of automatic beam limit defined. This can be either begin or end
but only end is effective.

e beam-numerator/beam-denominator is the beam duration to which the rule is to apply.
A beam is considered to have the duration of its shortest note. Set beam-numerator and
beam-denominator to '*' to have this rule apply to beams of any duration.

e time-signature-numerator/time-signature-denominator specifies the time signature
to which this rule should apply. If time-signature-numerator and time-signature-
denominator are set to '*' this rule will apply in any time signature.

e monent-numerator/moment-denominator is the position in the bar at which the beam
should end.

e context is optional, and it specifies the context at which the change should be made. The
default is 'Voice.

#(score-override-auto-beam-setting '(AB CD) EF) is equivalent to #(override-
auto-beam-setting '(ABCD) EF 'Score).

For example, if automatic beams should always end on the first quarter note, whatever the
time signature or beam duration, use

aB aaaaaaa
#(override-auto-beam-setting '(end * * * x) 1 4)
a8 a aaaaaa

0

)" 4

oJ

Chapter 1: Musical notation 61

You can force the beam settings to take effect only on beams whose shortest note is a certain
duration

\time 2/4

% end 1/16 beams for all time signatures at the 1/16 moment
#(override-auto-beam-setting '(end 1 16 * x) 1 16)

al6 aaaaaaal

a32 aaaal6aaaaal

% end 1/32 beams for all time signatures at the 1/16 moment
#(override-auto-beam-setting '(end 1 32 * x) 1 16)

a32 a a a al6 a a a a a |

oJ

3.4
4
[y,

You can force the beam settings to take effect only in certain time signatures

\time 5/8

% end beams of all durations in 5/8 time signature at the 2/8 moment
#(override-auto-beam-setting '(end * * 5 8) 2 8)

c8 cddd

\time 4/4

eBef feedd

\time 5/8

c8 cddd

| | | A W2 | N —| | | [@] | | |

ANV
e) Tl

When multiple voices are used the Staff context must be specified if the beaming is to be
applied to all voices in the staff:

\time 7/8

% rhythm 3-1-1-2

% Context not specified - does not work correctly
#(override-auto-beam-setting '(end * * 7 8) 3 8)
#(override-auto-beam-setting '(end * * 7 8) 4 8)
#(override-auto-beam-setting '(end * * 7 8) 5 8)
<< {a8 a a al6 a a a a8 a} \\ {f4. f8 £ f f} >>

% Works correctly with context specified
#(override-auto-beam-setting '(end * * 7 8) 3 8 'Staff)
#(override-auto-beam-setting '(end * * 7 8) 4 8 'Staff)
#(override-auto-beam-setting '(end * * 7 8) 5 8 'Staff)
<< {a8 a a al6 a a a a8 a} \\ {f4. £f8 £ £ f} >>

Chapter 1: Musical notation 62

Note: If any unexpected beam behavior occurs, check the default automatic beam settings in
‘scm/auto-beam.scm’ for possible interference, because the beam endings defined there will still
apply in addition to your own.

Any unwanted or conflicting default endings must be reverted for your time signature(s).
Existing auto-beam rules are removed by using

#(revert-auto-beam-setting
'(beam-1limit
beam-numerator beam-denominator
time-signature-numerator time-signature-denominator)
moment-numerator moment-denominator [context])

beam-limit, beam-numerator, beam-denominator, time-signature-numerator, time-
signature-denominator, moment-numerator, moment-denominator and context are the
same as above.

\time 4/4

al6 aaaaaaaaaaaaaaa

% undo a rule ending 1/16 beams in 4/4 time at 1/4 moment
#(revert-auto-beam-setting '(end 1 16 4 4) 1 4)

al6 aaaaaaaaaaaaaaa

f

o

2
0
oJ

The rule in a revert-auto-beam-setting statement must exactly match the original rule.
That is, no wildcard expansion is taken into account.
\time 1/4
#(override-auto-beam-setting '(end 1 16 1 4) 1 8)
alé a a a
#(revert-auto-beam-setting '(end 1 16 * *) 1 8) % this won't revert it!
aaaa
#(revert-auto-beam-setting '(end 1 16 1 4) 1 8) % this will
aaaa

)

e |
| —

A

o

Selected Snippets
Beam grouping in 7/8 time
There are no default automatic beam groupings specified for 7/8 time, so if automatic beams

are required the grouping must be specified. For example, to group all beams 2-3-2 in 7/8 time,
specify beam endings at 2/8 and 5/8:

Chapter 1: Musical notation 63

\relative c'' {
\time 7/8
% rhythm 2-3-2
a8 aaaaaa
#(override-auto-beam-setting '(end * * 7 8) 2 8)
#(override-auto-beam-setting '(end * * 7 8) 5 8)
a8 a aaaaa

() |\ N N N N N \ o |
)’ 4 o 4 NN N NNV NN | |

e

Reverting default beam endings

To typeset beams grouped 3-4-3-2 in 12/8 it is necessary first to override the default beam
endings in 12/8, and then to set up the new beaming endings:

\relative c'' {
\time 12/8

% Default beaming
aB aaaaaaaaaaa

% Revert default values in scm/auto-beam.scm for 12/8 time
#(revert-auto-beam-setting '(end * * 12 8) 3 8)
#(revert-auto-beam-setting '(end * * 12 8) 3 4)
#(revert-auto-beam-setting '(end * * 12 8) 9 8)

aB aaaaaaaaaaa

% Set new values for beam endings
#(override-auto-beam-setting '(end * * 12 8) 3 8)
#(override-auto-beam-setting '(end * * 12 8) 7 8)
#(override-auto-beam-setting '(end * * 12 8) 10 8)
aBaaaaaaaaaaa

*

O

5.0
"4 —]
¢J

Beam endings in Score context

Beam-ending rules specified in the Score context apply to all staves, but can be modified at
both Staff and Voice levels:

\relative c'' {
\time 5/4

Chapter 1: Musical notation 64

% Set default beaming for all staves
#(score-override-auto-beam-setting '(end * * 5 4) 3 8)
#(score-override-auto-beam-setting '(end * *x 5 4) 7 8)
<<
\new Staff {
c8 ccccccccec
}
\new Staff {
% Modify beaming for just this staff
#(override-auto-beam-setting '(end * * 5 4) 6 8 'Staff)
#(revert-auto-beam-setting '(end * * 5 4) 7 8 'Staff)
c8 ccccccccec
}
\new Staff {
% Inherit beaming from Score context
<<
{
\voiceOne
c8 ccccccccc
}
% Modify beaming for this voice only
\new Voice {
\voiceTwo
#(override-auto-beam-setting '(end * * 5 4) 6 8)
#(revert-auto-beam-setting '(end * * 5 4) 7 8)
aB aaaaaaaaa

>>

>>

Predefined commands

\autoBeam0ff, \autoBeam0n.

Known issues and warnings

If a score ends while an automatic beam has not been ended and is still accepting notes, this
last beam will not be typeset at all. The same holds for polyphonic voices, entered with << ...
\\ ... >> If a polyphonic voice ends while an automatic beam is still accepting notes, it is not
typeset.

Chapter 1: Musical notation 65

See also

Snippets: Section “Rhythms” in Snippets.

Manual beams

In some cases it may be necessary to override the automatic beaming algorithm. For example,
the autobeamer will not put beams over rests or bar lines, and in choral scores the beaming is
often set to follow the meter of the lyrics rather than the notes. Such beams can be specified
manually by marking the begin and end point with [and]

{

r4 r8[g' a r8] r8 gl | al] r8
}

o)

)’ 4 - N b |]]

o

Individual notes may be marked with \noBeam to prevent them from being beamed:

\time 2/4 c8 c\noBeam c c

Even more strict manual control with the beams can be achieved by setting the properties
stemLeftBeamCount and stemRightBeamCount. They specify the number of beams to draw on
the left and right side, respectively, of the next note. If either property is set, its value will be
used only once, and then it is erased. In this example, the last f is printed with only one beam
on the left side, i.e., the eighth-note beam of the group as a whole.

a8[r16 f g al

a8[ri6

\set stemLeftBeamCount = #2
\set stemRightBeamCount = #1

f
\set stemLeftBeamCount = #1
g al
()
L) & V]
O o
eJ

Selected Snippets
Flat flags and beam nibs

Flat flags on lone notes and beam nibs at the ends of beamed figures are both possible with
a combination of stemLeftBeamCount, stemRightBeamCount and paired [] beam indicators.

For right-pointing flat flags on lone notes, use paired [] beam indicators and set
stemLeftBeamCount to zero (see Example 1).

For left-pointing flat flags, set stemRightBeamCount instead (Example 2).

Chapter 1: Musical notation 66

For right-pointing nibs at the end of a run of beamed notes, set stemRightBeamCount
to a positive value. And for left-pointing nibs at the start of a run of beamed notes, set
stemLeftBeamCount instead (Example 3).

Sometimes it may make sense for a lone note surrounded by rests to carry both a left- and
right-pointing flat flag. Do this with paired [] beam indicators alone (Example 4).

(Note that \set stemLeftBeamCount is always equivalent to \once \set. In other words,
the beam count settings are not "sticky", so the pair of flat flags attached to the lone c'16[]
in the last example have nothing to do with the \set two notes prior.)

\score {
<<
% Example 1
\new RhythmicStaff {
\set stemLeftBeamCount = #0
c16[]
r3.
}

% Example 2

\new RhythmicStaff {
r8.
\set stemRightBeamCount
c16[]

}

#0

% Example 3

\new RhythmicStaff {
cl6 ¢
\set stemRightBeamCount
clé rr
\set stemLeftBeamCount = #2
clé c c

}

#2

% Example 4
\new RhythmicStaff {
cl6é c
\set stemRightBeamCount = #2
clé r
c16[]
rl6
\set stemLeftBeamCount = #2
cl6 c

>>

Chapter 1: Musical notation 67

Feathered beams

Feathered beams are used to indicate that a small group of notes should be played at an increas-
ing (or decreasing) tempo, without changing the overall tempo of the piece. The extent of the
feathered beam must be indicated manually using [and], and the beam feathering is turned
on by specifying a direction to the Beam property grow-direction.

If the placement of the notes and the sound in the MIDI output is to reflect the ritardando or
accelerando indicated by the feathered beam the notes must be grouped as a music expression
delimited by braces and preceded by a featheredDurations command which specifies the ratio
between the durations of the first and last notes in the group.

The square brackets show the extent of the beam and the braces show which notes are to
have their durations modified. Normally these would delimit the same group of notes, but this
is not required: the two commands are independent.

In the following example the eight 16th notes occupy exactly the same time as a half note,
but the first note is one half as long as the last one, with the intermediate notes gradually
lengthening. The first four 32nd notes gradually speed up, while the last four 32nd notes are at
a constant tempo.

\override Beam #'grow-direction = #LEFT
\featherDurations #(ly:make-moment 2 1)
{ct6lcccccccl}

\override Beam #'grow-direction = #RIGHT
\featherDurations #(ly:make-moment 2 3)
{c32[de f]}

% revert to non-feathered beams
\override Beam #'grow-direction = #'()
{g32[abcl }

f
°

e eee e & & o e o ¢ °

The spacing in the printed output represents the note durations only approximately, but the
MIDI output is exact.

Known issues and warnings

The \featherDurations command only works with very short music snippets, and when num-
bers in the fraction are small.

See also

Snippets: Section “Rhythms” in Snippets.

1.2.5 Bars

Chapter 1: Musical notation 68

Bar lines

Bar lines delimit measures, and are also used to indicate repeats. Normally, simple bar lines are
automatically inserted into the printed output at places based on the current time signature.

The simple bar lines inserted automatically can be changed to other types with the \bar
command. For example, a closing double bar line is usually placed at the end of a piece:

ed d c2 \bar "|."

)" 4 | |
4\ y £} | |
[fan Y W | |
ANV - | |
[Y) =

It is not invalid if the final note in a measure does not end on the automatically entered bar
line: the note is assumed to carry over into the next measure. But if a long sequence of such
carry-over measures appears the music can appear compressed or even flowing off the page. This
is because automatic line breaks happen only at the end of complete measures, i.e., where all
notes end before the end of a measure.

Note: An incorrect duration can cause line breaks to be inhibited, leading to a line of highly
compressed music or music which flows off the page.

Line breaks are also permitted at manually inserted bar lines even within incomplete mea-
sures. To allow a line break without printing a bar line, use

\bar nn

This will insert an invisible bar line and allow (but not force) a line break to occur at this point.
The bar number counter is not increased. To force a line break see Section 4.3.1 [Line breaking],
page 340.

This and other special bar lines may be inserted manually at any point. When they coincide
with the end of a measure they replace the simple bar line which would have been inserted there
automatically. When they do not coincide with the end of a measure the specified bar line is
inserted at that point in the printed output. Such insertions do not affect the calculation and
placement of subsequent automatic bar lines.

The simple bar line and five types of double bar line are available for manual insertion:

f1 \bar "|" g \bar "|[" a \bar ".|" b \bar ".|." ¢ \bar "|.|" d \bar "|." e

<«

¢

O

N (o

¢

O

¢

[@)

G e
—

together with dotted and dashed bar lines:

f1 \bar ":" g \bar "dashed" a
o)
)" 4 D
7\ r) .
v o T o —O
eJ

and five types of repeat bar line:

Chapter 1: Musical notation 69

f1 \bar "|:" g \bar ":|:" a \bar ":|.|:" b \bar ":|.:" ¢c \bar ":|" d
o)
)’ 4 | | | | | | | V=
£\ r) | 10 010 /Nl o o/[fe oy ~F
U i o e O olN]e =~ Q| |
;‘J_V <« | | ~7 | | | | | | |

Although the bar line types signifying repeats may be inserted manually they do not in them-
selves cause LilyPond to recognize a repeated section. Such repeated sections are better entered

using the various repeat commands (see Section 1.4 [Repeats|, page 98), which automatically
print the appropriate bar lines.

In addition, you can specify "||:", which is equivalent to "|:" except at line breaks, where

it gives a double bar line at the end of the line and a start repeat at the beginning of the next
line.

\override Score.RehearsalMark #'padding = #3
cccc

\bar "||:"

c ¢ ¢ ¢ \break

\bar III I :H

cccc

¢

oo

In scores with many staves, a \bar command in one staff is automatically applied to all staves.

The resulting bar lines are connected between different staves of a StaffGroup, PianoStaff, or
GrandStaff.

<<
\new StaffGroup <<
\new Staff {
e'd d'
\bar "||"
f' e!
}
\new Staff { \clef bass c4 ge g }
>>

\new Staff { \clef bass c2 c2 }
>>

Chapter 1: Musical notation 70
o)
)’ 4

4\ r)
[ar YA W

-~

N
o
N
N

Selected Snippets
The command \bar bartype is a shortcut for \set Timing.whichBar = bartype. A bar line is

created whenever the whichBar property is set.

The default bar type used for automatically inserted bar lines is "|". This may be changed
at any time with \set Timing.defaultBarType = bartype.

See also

Notation Reference: Section 4.3.1 [Line breaking], page 340, Section 1.4 [Repeats|, page 98,
[Grouping staves|, page 123.

Snippets: Section “Rhythms” in Snippets.

Internals Reference: Section “BarLine” in Internals Reference (created at Section “Staff”

in Internals Reference level), Section “SpanBar” in Internals Reference (across staves), Section
“Timing_translator” in Internals Reference (for Timing properties).

Bar numbers

Bar numbers are typeset by default at the start of every line except the first line. The number
itself is stored in the currentBarNumber property, which is normally updated automatically for
every measure. It may also be set manually:

clccec

\break

\set Score.currentBarNumber = #50
clccc

Selected Snippets

Bar numbers can be typeset at regular intervals instead of just at the beginning of every line.
To do this the default behavior must be overridden to permit bar numbers to be printed at
places other than the start of a line. This is controlled by the break-visibility property of
BarNumber. This takes three values which may be set to #t or #f to specify whether the corre-
sponding bar number is visible or not. The order of the three values is end of line visible,
middle of line visible, beginning of line visible. In the following example bar numbers
are printed at all possible places:

Chapter 1: Musical notation 71

\override Score.BarNumber #'break-visibility = #'#(#t #t #t)
\set Score.currentBarNumber = #11

\bar "" Y, Permit first bar number to be printed

clccc

\break

cccc

12 13 14 15

16 17 18 19

B S R S . -~

and here the bar numbers are printed every two measures except at the end of the line:

\override Score.BarNumber #'break-visibility = #'#(#f #t #t)

\set Score.currentBarNumber = #11

\bar "" % Permit first bar number to be printed

% Print a bar number every second measure

\set Score.barNumberVisibility = #(every-nth-bar-number-visible 2)
clcccec

\break

ccccec

12 14

N (o

Gz e

18 20

G

LS R S ~ N o

The size of the bar number may be changed. This is illustrated in the following example
which also shows how to enclose bar numbers in boxes and circles, and shows an alternative way
of specifying #(#f #t #t) for break-visibility.

% Prevent bar numbers at the end of a line and permit them elsewhere
\override Score.BarNumber #'break-visibility
= #end-of-line-invisible

% Increase the size of the bar number by 2
\override Score.BarNumber #'font-size = #2
\repeat unfold 3 { c1 } \bar "|"

% Draw a box round the following bar number(s)
\override Score.BarNumber #'stencil

= #(make-stencil-boxer 0.1 0.25 ly:text-interface::print)
\repeat unfold 3 { c1 } \bar "|"

% Draw a circle round the following bar number(s)

Chapter 1: Musical notation 72

\override Score.BarNumber #'stencil
= #(make-stencil-circler 0.1 0.25 ly:text-interface::print)
\repeat unfold 4 { c1 } \bar "[|."

2 3 M4 [B 6 ©® ®

-©- -©- -©- -©- -©- -©- -©- -©-
o | |
7\ | |
[fanY | |
A\2V4 | |
J o o

Bar numbers by default are left-aligned to their parent object. This is usually the left edge
of a line or, if numbers are printed within a line, the left bar line of the measure. The numbers
may also be positioned directly on the bar line or right-aligned to the bar line:

\set Score.currentBarNumber = #111

\override Score.BarNumber #'break-visibility = #'#(#t #t #t)

% Increase the size of the bar number by 2

\override Score.BarNumber #'font-size = #2

% Print a bar number every second measure

\set Score.barNumberVisibility = #(every-nth-bar-number-visible 2)
cl cl

% Center-align bar numbers

\override Score.BarNumber #'self-alignment-X = #0
cl cl
% Right-align bar numbers
\override Score.BarNumber #'self-alignment-X = #-1
cl cl

0 112 114 116

)\I r £}

[[av Y W

ANV

¢ o © o o ©- ©

Bar numbers can be removed entirely by removing the Bar_number_engraver from the Score
context.

\layout {
\context {
\Score
\remove "Bar_number_engraver"
}
}
\relative c''{
c4 ¢ ¢ ¢ \break

cd ccc

}

f)

&t o £ F

Chapter 1: Musical notation 73

See also
Snippets: Section “Rhythms” in Snippets.

Internals Reference: Section “BarNumber” in Internals Reference.

Known issues and warnings

Bar numbers may collide with the top of the Section “StaffGroup” in Internals Reference bracket,
if there is one. To solve this, the padding property of Section “BarNumber” in Internals Refer-
ence can be used to position the number correctly.

Bar and bar number checks

Bar checks help detect errors in the entered durations. A bar check may be entered using the bar
symbol, |, at any place where a bar line is expected to fall. If bar check lines are encountered
at other places, a list of warnings is printed in the log file, showing the line numbers and lines
in which the bar checks failed. In the next example, the second bar check will signal an error.

\time 3/4 c2 e4 | g2 |
Bar checks can also be used in lyrics, for example

\lyricmode {
\time 2/4
Twin -- kle | Twin -- kle |

An incorrect duration can result in a completely garbled score, especially if the score is
polyphonic, so a good place to start correcting input is by scanning for failed bar checks and
incorrect durations.

If successive bar checks are off by the same musical interval, only the first warning message
is displayed. This allows the warning to focus on the source of the timing error.

It is also possible to redefine the action taken when a bar check or pipe symbol, |, is encoun-
tered in the input, so that it does something other than a bar check. This is done by assigning
a music expression to pipeSymbol. In the following example | is set to insert a double bar line
wherever it appears in the input, rather than checking for end of bar.

pipeSymbol = \bar "||"
{

P>
C

< G < G < < < G

When copying large pieces of music, it can be helpful to check that the LilyPond bar
number corresponds to the original that you are entering from. This can be checked with
\barNumberCheck, for example,

\barNumberCheck #123

will print a warning if the currentBarNumber is not 123 when it is processed.

Chapter 1: Musical notation 74

See also

Snippets: Section “Rhythms” in Snippets

Rehearsal marks

To print a rehearsal mark, use the \mark command

cl \mark \default
cl \mark \default
cl \mark #8

cl \mark \default
cl \mark \default

A B H J

o
N (o1
N
o
N
iy
-
g
N
N
N
N

P

The letter ‘I’ is skipped in accordance with engraving traditions. If you wish to include the
letter ‘I’, then use

\set Score.markFormatter = #format-mark-alphabet

The mark is incremented automatically if you use \mark \default, but you can also use
an integer argument to set the mark manually. The value to use is stored in the property
rehearsalMark.

The style is defined by the property markFormatter. It is a function taking the current mark
(an integer) and the current context as argument. It should return a markup object. In the
following example, markFormatter is set to a pre-defined procedure. After a few measures, it is
set to a procedure that produces a boxed number.

\set Score.markFormatter #format-mark-numbers
cl \mark \default
cl \mark \default
\set Score.markFormatter
cl \mark \default
\set Score.markFormatter = #format-mark-circle-numbers
cl \mark \default
\set Score.markFormatter

cl

#format-mark-box-numbers

#format-mark-circle-letters

1 2 ® O

{ ¢ O [@) [@] [@) <«

G

The file ‘scm/translation-functions.scm’ contains the definitions of format-mark-
numbers (the default format), format-mark-box-numbers, format-mark-letters and
format-mark-box-letters. These can be used as inspiration for other formatting functions.

You may use format-mark-barnumbers, format-mark-box-barnumbers, and format-mark-
circle-barnumbers to get bar numbers instead of incremented numbers or letters.

Other styles of rehearsal mark can be specified manually
\mark "A1"

Score.markFormatter does not affect marks specified in this manner. However, it is possible
to apply a \markup to the string.

Chapter 1: Musical notation 75

\mark \markup{ \box A1l }
Music glyphs (such as the segno sign) may be printed inside a \mark

cl \mark \markup { \musicglyph #"scripts.segno" }
cl \mark \markup { \musicglyph #"scripts.coda" }

cl \mark \markup { \musicglyph #"scripts.ufermata" }
cl

X 0~

o 4o 49 ©o 49 ©o

N (@

P>
|

See Section B.6 [The Feta font], page 446, for a list of symbols which may be printed with
\musicglyph.

For common tweaks to the positioning of rehearsal marks, see Section 1.8.2 [Formatting text],
page 167.

See also
Notation Reference: Section B.6 [The Feta font], page 446, Section 1.8.2 [Formatting text],
page 167.

Installed Files: ‘scm/translation-functions.scm’ contains the definition of format-mark-
numbers and format-mark-letters. They can be used as inspiration for other formatting
functions.

Snippets: Section “Rhythms” in Snippets.

Internals Reference: Section “RehearsalMark” in Internals Reference.

1.2.6 Special rhythmic concerns

Grace notes
Grace notes are ornaments that are written out. Grace notes are printed in a smaller font and
take up no logical time in a measure.

c4 \grace c16 c4
\grace { c16[d16] } c2

0 A

/.
ANV I

e) |

Lilypond also supports two special types of grace notes, the acciaccatura—an unmeasured
grace note indicated by a slurred small note with a slashed stem—and the appoggiatura, which
takes a fixed fraction of the main note and appears in small print without a slash.

\grace c8 b4

\acciaccatura d8 c4
\appoggiatura e8 d4
\acciaccatura { gi6[f] } e4

H

=g

A2V
e) |

Chapter 1: Musical notation 76

The placement of grace notes is synchronized between different staves. In the following
example, there are two sixteenth grace notes for every eighth grace note

<< \new Staff { e2 \grace { c16[d e f] } e2 }
\new Staff { c2 \grace { g8[b] } c2 } >>

"4 ZEER WY Al /)
y A £ A

[fan YA W]

A3V

e

() —

)" 4 | |

A (v o | g 7
[£an Y U2 P
A\3V [bt [
y, | |

If you want to end a note with a grace, use the \afterGrace command. It takes two
arguments: the main note, and the grace notes following the main note.

cl \afterGrace d1 { c16[d] } c1

0 A
| . ©
J

This will put the grace notes after a space lasting 3/4 of the length of the main note. The
default fraction 3/4 can be changed by setting afterGraceFraction. The following example
shows the results from setting the space at the default, at 15/16, and finally at 1/2 of the main
note.
<<

\new Staff {

cl \afterGrace d1 { c16[d] } cil

}

\new Staff {

#(define afterGraceFraction (cons 15 16))
cl \afterGrace d1 { c16[d] } c1

}

\new Staff {

#(define afterGraceFraction (cons 1 2))
cl \afterGrace d1 { c16[d] } ci1

+
>>

A\l

[¥

o)
o

o O <«

A\l

¢

o O O

A\l

[¥

¢

o O O

PO U U
o

The space between the main note and the grace note may also be specified using spacers.
The following example places the grace note after a space lasting 7/8 of the main note.

Chapter 1: Musical notation 7

\new Voice {
<< { d1~\trill_(}
{ s2 s4. \grace { c16[d]l } } >>

cl)
}

Hh U A
K—f o —7"* (@)
'\é}g\/

A \grace music expression will introduce special typesetting settings, for example, to produce
smaller type, and set directions. Hence, when introducing layout tweaks to override the special
settings, they should be placed inside the grace expression. The overrides should also be reverted
inside the grace expression. Here, the grace note’s default stem direction is overriden and then
reverted.

\new Voice {
\acciaccatura {
\stemDown
f16->
\stemNeutral
}
g4 e c2
}

(-

3
\ 7

NGy

Selected Snippets

The slash through the stem found in acciaccaturas can be applied in other situations:

\relative c'' {
\override Stem #'stroke-style = #'"grace"
c8(d2) e8(f4)

}
[—
&) /‘hll ali
U r

The layout of grace expressions can be changed throughout the music using the function
add-grace-property. The following example undefines the Stem direction for this grace, so
that stems do not always point up.

\relative c'' {
\new Staff {

#(add-grace-property 'Voice 'Stem 'direction ly:stem::calc-direction)

#(remove-grace-property 'Voice 'Stem 'direction)

\new Voice {
\acciaccatura { f16 } g4
\grace { di16[e] } f4
\appoggiatura { a,32[b c d] } e2

Chapter 1: Musical notation 78

}
}
}
(s CF rf

¢ 2

Another option is to change the variables startGraceMusic, stopGraceMusic,
startAcciaccaturaMusic, stopAcciaccaturaMusic, startAppoggiaturaMusic,
stopAppoggiaturaMusic. The default values of these can be seen in the file 1y/grace-init
.1ly. By redefining them other effects may be obtained.

Grace notes may be forced to align with regular notes in other staves:

\relative c'' {
<<
\override Score.SpacingSpanner #'strict-grace-spacing = #itt
\new Staff {
cd
\afterGrace c4 { c16[c8 c16] }
c4d r
}
\new Staff {
clé6ccccccccdr

}
>>
}
ns Im AN
ANV < | IP - | :
U | | |
()
D |
U |
See also

Music Glossary: Section “grace notes” in Music Glossary, Section “acciaccatura” in Music
Glossary, Section “appoggiatura” in Music Glossary.

Installed Files: ‘ly/grace-init.ly’.
Snippets: Section “Rhythms” in Snippets.

Internals Reference: Section “GraceMusic” in Internals Reference.

Known issues and warnings

A multi-note beamed acciaccatura is printed without a slash, and looks exactly the same as a
multi-note beamed appoggiatura.

Grace note synchronization can also lead to surprises. Staff notation, such as key signatures,
bar lines, etc., are also synchronized. Take care when you mix staves with grace notes and staves
without, for example,

Chapter 1: Musical notation 79

<< \new Staff { e4 \bar "|:" \grace cl16 d2. }
\new Staff { c4 \bar "|:" d2. } >>
o) A
)’ 4 | | NN .
Y AN r @) | IO A | OOl =
U | 10 | 1D
ANV | | | |
¢
o)
—l—=

/ | 10 | | Ol
NV [| | | |
¢ ! '

This can be remedied by inserting grace skips of the corresponding durations in the other staves.
For the above example

<< \new Staff { e4 \bar "|:" \grace cl16 d2. }

\new Staff { c4 \bar "|:" \grace s16 d2. } >>
0 A
A ¢ o
[[YA W | 10 |
ANV | | |
[y}
0

| | .

I—Fr

] | 1D

ANV [|
Y,

Grace sections should only be used within sequential music expressions. Nesting or juxta-
posing grace sections is not supported, and might produce crashes or other errors.

Aligning to cadenzas

In an orchestral context, cadenzas present a special problem: when constructing a score that
includes a measured cadenza or other solo passage, all other instruments should skip just as
many notes as the length of the cadenza, otherwise they will start too soon or too late.

One solution to this problem is to use the functions mmrest-of-length and skip-of-length.
These Scheme functions take a defined piece of music as an argument and generate a multi-
measure rest or \skip exactly as long as the piece.

MyCadenza = \relative c' {
cd d8 e f g g4
f2 g4 g

}

\new GrandStaff <<

\new Staff {
\MyCadenza c'1
\MyCadenza c'1

}

\new Staff {
#(1ly:export (mmrest-of-length MyCadenza))
c'l
#(1ly:export (skip-of-length MyCadenza))
c'l

>>

Chapter 1: Musical notation 80

()

)" 4 | | | |

€ ! > — ! >

{hH R . —— o

e o @ o |4 @ ©

0

4\ r) - L

[[an YA W]

ANV

[y -© ©
See also

Music Glossary: Section “cadenza” in Music Glossary.

Snippets: Section “Rhythms” in Snippets.

Time administration

Time is administered by the Timing_translator, which by default is to be found in the Score
context. An alias, Timing, is added to the context in which the Timing translator is placed.

The following properties of Timing are used to keep track of timing within the score.

currentBarNumber
The current measure number. For an example showing the use of this property see
[Bar numbers], page 70.

measurelLength
The length of the measures in the current time signature. For a 4/4 time this is 1,
and for 6/8 it is 3/4. Its value determines when bar lines are inserted and how
automatic beams should be generated.

measurePosition
The point within the measure where we currently are. This quantity is reset by
subtracting measureLength whenever measureLength is reached or exceeded. When
that happens, currentBarNumber is incremented.

timing If set to true, the above variables are updated for every time step. When set to
false, the engraver stays in the current measure indefinitely.

Timing can be changed by setting any of these variables explicitly. In the next example, the
default 4/4 time signature is printed, but measureLength is set to 5/4. At 4/8 through the
third measure, the measurePosition is advanced by 1/8 to 5/8, shortening that bar by 1/8.
The next bar line then falls at 9/8 rather than 5/4.

\set Score.measurelength = #(ly:make-moment 5 4)
cl c4

cl c4

c4d c4

\set Score.measurePosition = #(ly:make-moment 5 8)
b4 b4 b8

c4 ci

fa—
N (o]

I
o ¢ o ¢ -o-oL--.lt-j'\'-dlue-

P

As the example illustrates, 1y:make-moment n m constructs a duration of n/m of a whole note.
For example, 1y:make-moment 1 8 is an eighth note duration and ly:make-moment 7 16 is the
duration of seven sixteenths notes.

Chapter 1: Musical notation 81

See also
This manual: [Bar numbers], page 70, [Unmetered music|, page 47
Snippets: Section “Rhythms” in Snippets.

Internals Reference: Section “Timing_translator” in Internals Reference, Section “Score” in
Internals Reference

1.3 Expressive marks

RONDO
Allegro
o#n — e B — r‘l" —— T ~ —1 i r‘ﬂ
4L 4N v —] . LA 4
. -l ™ . ..
o e e y —a —H = —— ' : e ' y —

: N =
'y} ;.:;. @ g :._;.

| | | 1 |

N

.é. é..

|
il
[
[

?
f
ﬁ;
5 %9

INe|

~
INe|
INe|
INe|
Ne|
Ne|
INe|

|

m_j_ 14
)
»

This section lists various expressive marks that can be created in a score.

1.3.1 Attached to notes

This section explains how to create expressive marks that are attached to notes: articulations,
ornamentations, and dynamics. Methods to create new dynamic markings are also discussed.

Articulations and ornamentations

A variety of symbols that denote articulations, ornamentations, and other performance indica-
tions can be attached to a note using this syntax:

note\name

The possible values for name are listed in Section B.10 [List of articulations], page 500. For
example:

c4\staccato c\mordent b2\turn

cl\fermata
) AV N)
5 =) [Q)
] |
ANV | |
() ' '

Some of these articulations have shorthands for easier entry. Shorthands are appended to the
note name, and their syntax consists of a dash - followed by a symbol signifying the articulation.
Predefined shorthands exist for marcato, stopped, tenuto, staccatissimo, accent, staccato, and
portato. Their corresponding output appears as follows:
c4-" c-+ c—- c-|
c4-> c-. c2-

Chapter 1: Musical notation 82

() A + _ 1 -~ -
_q_ﬂ_
G

The rules for the default placement of articulations are defined in ‘scm/script.scm’. Artic-
ulations and ornamentations may be manually placed above or below the staff, see Section 5.4.2
[Direction and placement], page 394.

Selected Snippets

Modifying default values for articulation shorthand notation

The shorthands are defined in ‘1ly/script-init.1ly’, where the variables dashHat, dashPlus,
dashDash, dashBar, dashLarger, dashDot, and dashUnderscore are assigned default values.
The default values for the shorthands can be modified. For example, to associate the —+
(dashPlus) shorthand with the trill symbol instead of the default + symbol, assign the value
trill to the variable dashPlus:

\relative c¢'' { ci1-+ }
dashPlus = "trill"
\relative c¢'' { c1-+ }

0 +
[y,

Controlling the vertical ordering of scripts

The vertical ordering of scripts is controlled with the 'script-priority property. The lower
this number, the closer it will be put to the note. In this example, the TextScript (the sharp
symbol) first has the lowest priority, so it is put lowest in the first example. In the second, the
prall trill (the Script) has the lowest, so it is on the inside. When two objects have the same
priority, the order in which they are entered determines which one comes first.

\relative c''' {
\once \override TextScript #'script-priority = #-100
a2”\prall~\markup { \sharp }

\once \override Script #'script-priority = #-100
a2”\prall~\markup { \sharp }

}
L% %
i 4
H ¢ &
Ht——
o

Creating a delayed turn

Creating a delayed turn, where the lower note of the turn uses the accidental, requires several
overrides. The outside-staff-priority property must be set to #f, as otherwise this would
take precedence over the avoid-slur property. The value of halign is used to position the
turn horizontally.

Chapter 1: Musical notation 83

\relative c'' {
\once \override TextScript #'avoid-slur = #'inside
\once \override TextScript #'outside-staff-priority = ##f
c2("\markup \tiny \override #'(baseline-skip . 1) {
\halign #-4
\center-column {
\sharp
\musicglyph #"scripts.turn"
}
}
d4.) c8

See also

Music Glossary: Section “tenuto” in Music Glossary, Section “accent” in Music Glossary,
Section “staccato” in Music Glossary, Section “portato” in Music Glossary.

Notation Reference: Section 5.4.2 [Direction and placement], page 394, Section B.10 [List of
articulations|, page 500, [Trills|, page 97.

Installed Files: ‘scm/script.scm’.
Snippets: Section “Expressive marks” in Snippets.

Internals Reference: Section “Script” in Internals Reference, Section “TextScript” in Internals
Reference.

Dynamics

Absolute dynamic marks are specified using a command after a note, such as c4\ff. The
available dynamic marks are \ppppp, \pppp, \ppp, \pp, \p, \mp, \mf, \f, \ff, \fff, \ffff,
\fp, \sf, \sff, \sp, \spp, \sfz, and \rfz. The dynamic marks may be manually placed above
or below the staff, see Section 5.4.2 [Direction and placement], page 394.

c2\ppp c\mp
c2\rfz c~\mf
c2_\spp c \ff

mf Jf

e (7 7 7 7 7 l(l
VA

|

I

{
A |]]]
I I I

G

I
ppPMP of, PP

A crescendo mark is started with \< and terminated with \!, an absolute dynamic, or an
additional crescendo or decrescendo mark. A decrescendo mark is started with \> and is also
terminated with \!, an absolute dynamic, or another crescendo or decrescendo mark. \cr and
\decr may be used instead of \< and \>. Hairpins are engraved by default using this notation.
c2\< c\!
d2\< d\f
e2\< e\>

Chapter 1: Musical notation 84

o o [@)

-
F
|

T

TTTO
\
N

_— =f — — =" ==

Spacer rests are needed to engrave multiple marks on one note.

c4\< c\! d\> e\!
<< f1 { s4 s4\< s4\> s4\! } >>

0 o

ANV I

o = <>

In some situations the \espressivo articulation mark may be the appropriate choice to
indicate a crescendo and decrescendo on one note:

c2 bd a
gl\espressivo
o) |
)’ 4 |
ANV | | -~
ry) — ==

Crescendos and decrescendos can be engraved as textual markings instead of hairpins. Dashed
lines are printed to indicate their extent. The built-in commands that enable these text modes
are \crescTextCresc, \dimTextDecresc, \dimTextDecr, and \dimTextDim. The corresponding
\crescHairpin and \dimHairpin commands will revert to hairpins again:

\crescTextCresc
c2\< d | e f\!
\dimTextDecresc
e2\> d | c b\!
\crescHairpin
c2\< d | e f\!
\dimHairpin
e2\> d\!
o) 5
)’ 4 =Y |l 7 7 el 7
£\ r) | | e 7 ~ 7 e =
[o Y /2| | |] =
ANV | | | |
ry) 1 ' 1 1 —
cresc.- - - decresc.- - I

To create new absolute dynamic marks or text that should be aligned with dynamics, see
[New dynamic marks|, page 87.

Vertical positioning of dynamics is handled by Section “DynamicLineSpanner” in Internals
Reference.

Chapter 1: Musical notation 85

Predefined commands

\dynamicUp, \dynamicDown, \dynamicNeutral, \crescTextCresc, \dimTextDim,
\dimTextDecr, \dimTextDecresc, \crescHairpin, \dimHairpin.

Selected Snippets
Setting hairpin behavior at bar lines

If the note which ends a hairpin falls on a downbeat, the hairpin stops at the bar line
immediately preceding. This behavior can be controlled by overriding the 'to-barline property.

\relative c'' {
e4\< e2.
el\!
\override Hairpin #'to-barline = ##f
ed\< e2.
el\!

0

eJ _ _—

® 77 <« K0 <«

Setting the minimum length of hairpins

If hairpins are too short, they can be lengthened by modifying the minimum-length property
of the Hairpin object.
\relative c'' {

c4\< c\! d\> e\!

\override Hairpin #'minimum-length = #5

<< f1 { 84 s\< s\> s\! } >
}

0

]
ANV I I

g ——

1O

Printing hairpins using al niente notation

Hairpins may be printed with a circled tip (al niente notation) by setting the circled-tip
property of the Hairpin object to #t.
\relative c'' {

\override Hairpin #'circled-tip = ##t

c2\< c\!

c4\> c\< c2\!
}

()
ANV - | | | | |
D N T

Vertically aligned dynamics and textscripts

Chapter 1: Musical notation 86

By setting the 'Y-extent property to a suitable value, all DynamicLineSpanner objects
(hairpins and dynamic texts) can be aligned to a common reference point, regardless of their
actual extent. This way, every element will be vertically aligned, thus producing a more pleasing
output.

The same idea is used to align the text scripts along their baseline.

music = \relative c'' {
c2\p~\markup { gorgeous } c\f \markup { fantastic }
cd\p c\f\> c c\!'\p

}

{
\music \break
\override DynamicLineSpanner #'staff-padding = #2.0
\override DynamicLineSpanner #'Y-extent = #'(-1.5 . 1.5)
\override TextScript #'Y-extent = #'(-1.5 . 1.5)

\music
}
0] gorgeous fantastic
)" 4
it C—F “ r » - .
ANV, | I i I I !
U I I | | I i
P S P f——p
3 p gorgeous fantastic
)’ 4
(i C-F e r - - .
Y i | ! ! i
U I | | T i
r S p f——p

Hiding the extender line for text dynamics

Text style dynamic changes (such as cresc. and dim.) are printed with a dashed line showing
their extent. This line can be suppressed in the following way:

\relative c'' {
\override DynamicTextSpanner #'dash-period = #-1.0

\crescTextCresc
ciI\< | d | b | c\!
}
()
)" 4 P
£\ o O ~F o> [Q)
[[an Y W ~F
ANV
v cresc.

Changing text and spanner styles for text dynamics

The text used for crescendos and decrescendos can be changed by modifying the context
properties crescendoText and decrescendoText. The style of the spanner line can be changed
by modifying the 'style property of DynamicTextSpanner. The default value is 'hairpin, and
other possible values include 'line, 'dashed-line and 'dotted-line.

Chapter 1: Musical notation 87

\relative c'' {
\set crescendoText = \markup { \italic { cresc. poco } }
\set crescendoSpanner = #'text
\override DynamicTextSpanner #'style = #'dotted-line
a2\< a
a2 a
a2 a
a2 a\mf

|
i
(7]

p_—
N (¢4

\
\
\

[[

\
\

G

cresc.poco - - - - - - mf

See also

Music Glossary: Section “al niente” in Music Glossary, Section “crescendo” in Music Glos-
sary, Section “decrescendo” in Music Glossary, Section “hairpin” in Music Glossary.

Learning Manual: Section “Articulation and dynamics” in Learning Manual.

Notation Reference: Section 5.4.2 [Direction and placement], page 394, [New dynamic marks],
page 87, Section 3.5.3 [What goes into the MIDI output?], page 326, Section 3.5.5 [Controlling
MIDI dynamics], page 328

Snippets: Section “Expressive marks” in Snippets.

Internals Reference: Section “DynamicText” in Internals Reference, Section “Hairpin” in
Internals Reference, Section “DynamicLineSpanner” in Internals Reference.

New dynamic marks

The easiest way to create dynamic indications is to use \markup objects.

moltoF = \markup { molto \dynamic f }

\relative c' {
<d e>16_\moltoF <d e>
<d e>2..

e |

N (@

P
|

In markup mode, editorial dynamics (within parentheses or square brackets) can be created.
The syntax for markup mode is described in Section 1.8.2 [Formatting text], page 167.

roundF = \markup { \center-align \concat { \bold { \italic (}
\dynamic f \bold { \italic) } } }
boxF = \markup { \bracket { \dynamic f } }
\relative c' {
c1l_\roundF
c1_\boxF
}

Chapter 1: Musical notation 88
o)
)’ 4
[an)

/\
ANV
[Y) o o

» N

Simple, centered dynamic marks are easily created with the make-dynamic-script function.
The dynamic font only contains the characters f,m,p,r,s and z.

r @)
\ W]

—~

sfzp = #(make-dynamic-script "sfzp")
\relative c' {

c4 c c\sfzp ¢
}

N (@

o o o @

fzp

In general, make-dynamic-script takes any markup object as its argument. In the following
example, using make-dynamic-script ensures the vertical alignment of markup objects and
hairpins that are attached to the same note head.

Gz e
—

roundF = \markup { \center-align \concat {
\normal-text { \bold { \italic (} }
\dynamic f
\normal-text { \bold { \italic) } } } }
boxF = \markup { \bracket { \dynamic f } }
roundFdynamic = #(make-dynamic-script roundF)
boxFdynamic = #(make-dynamic-script boxF)
\relative c' {
c4_\roundFdynamic\< d e f
g,1_\boxFdynamic
}

)’ A)
£\ r) |
[[av Y I

B —

»—— I

The Scheme form of markup mode may be used instead. Its syntax is explained in
Section 6.4.1 [Markup construction in Scheme], page 428.

moltoF = #(make-dynamic-script
(markup #:normal-text "molto"
#:dynamic "f"))
\relative c' {
<d e>16 <d e>
<d e>2..\moltoF

}
)
)" 4
(s €C—T
SV oo
e e
molto f

Font settings in markup mode are described in [Selecting font and font size], page 168.

Chapter 1: Musical notation 89

See also

Notation Reference: Section 1.8.2 [Formatting text], page 167, [Selecting font and font size],
page 168, Section 6.4.1 [Markup construction in Scheme|, page 428, Section 3.5.3 [What goes
into the MIDI output?], page 326, Section 3.5.5 [Controlling MIDI dynamics|, page 328.

Snippets: Section “Expressive marks” in Snippets.

1.3.2 Curves

This section explains how to create various expressive marks that are curved: normal slurs,
phrasing slurs, breath marks, falls, and doits.

Slurs

Slurs are entered using parentheses:
f4(g a) a8 b(

a4 g2 f4)

<c e>2(<b d>2)

n Y P
4 o | el Zi p=
= | SpE=
5 |

Slurs may be manually placed above or below the notes, see Section 5.4.2 [Direction and
placement], page 394.
c2(d)
\slurDown
c2(4
\slurNeutral
c2(d)

\
TTTO

N
TTTO

\

\

Simultaneous or overlapping slurs are not permitted, but a phrasing slur can overlap a slur.
This permits two slurs to be printed at once. For details, see [Phrasing slurs|, page 90.
Slurs can be solid, dotted, or dashed. Solid is the default slur style:
c4(e g2)
\slurDashed
g4(e c2)
\slurDotted
c4(e g2)
\slurSolid
g4(e c2)

N |®]

QL
| 1NN

| TRER

P

+
K.l
¢
[

K YNl

~—*

Predefined commands
\slurUp, \slurDown, \slurNeutral, \slurDashed, \slurDotted, \slurSolid.

Chapter 1: Musical notation 90

Selected Snippets
Using double slurs for legato chords

Some composers write two slurs when they want legato chords. This can be achieved by
setting doubleSlurs.

\relative c' {

\set doubleSlurs = #i#t

<c e>4(<d f> <c e> <d f>)
}

Positioning text markups inside slurs

Text markups need to have the outside-staff-priority property set to false in order to
be printed inside slurs.

\relative c'' {
\override TextScript #'avoid-slur = #'inside
\override TextScript #'outside-staff-priority = ##f
c2("\markup { \halign #-10 \natural } d4.) c8

b

0
e &

o !

See also
Music Glossary: Section “slur” in Music Glossary.
Learning Manual: Section “On the un-nestedness of brackets and ties” in Learning Manual.

Notation Reference: Section 5.4.2 [Direction and placement], page 394, [Phrasing slurs],
page 90.

Snippets: Section “Expressive marks” in Snippets.

Internals Reference: Section “Slur” in Internals Reference.

Phrasing slurs

Phrasing slurs (or phrasing marks) that indicate a musical sentence are written using the com-
mands \ (and \) respectively:

ca\(d(e) f(
e2) d\)

() — &

ANV
e) |

Chapter 1: Musical notation 91

Typographically, a phrasing slur behaves almost exactly like a normal slur. However, they
are treated as different objects; a \slurUp will have no effect on a phrasing slur. Phrasing slurs
may be manually placed above or below the notes, see Section 5.4.2 [Direction and placement],
page 394.

c4A\(g' c,(b) | c1\)
\phrasingSlurUp
cA\(g' c,(b) | c1\)

O i —

7\ r' @) I

bt T

[y} 4 0 3 o 4 054 o
S~ ~

Simultaneous or overlapping phrasing slurs are not permitted.

Phrasing slurs can be solid, dotted, or dashed. Solid is the default style for phrasing slurs:
ca\(e g2\)

\phrasingSlurDashed
g4\ (e c2\)
\phrasingSlurDotted
ca\(e g2\)
\phrasingSlurSolid
g4\ (e c2\)

N (@

+
\ QL
)

L

Q[
| 1NN

P
|

B YAl

=

Predefined commands

\phrasingSlurUp, \phrasingSlurDown, \phrasingSlurNeutral, \phrasingSlurDashed,
\phrasingSlurDotted, \phrasingSlurSolid.

See also
Learning Manual: Section “On the un-nestedness of brackets and ties” in Learning Manual.
Notation Reference: Section 5.4.2 [Direction and placement], page 394.
Snippets: Section “Expressive marks” in Snippets.

Internals Reference: Section “PhrasingSlur” in Internals Reference.

Breath marks

Breath marks are entered using \breathe:
c2. \breathe d4

g)
eJ ! '

Musical indicators for breath marks in ancient notation, divisiones, are supported. For details,
see [Divisiones], page 286.

Chapter 1: Musical notation 92

Selected Snippets

Changing the breath mark symbol

The glyph of the breath mark can be tuned by overriding the text property of the
BreathingSign layout object with any markup text
\relative c'' {
c2
\override BreathingSign #'text = \markup { \musicglyph #"scripts.rvarcomma" }
\breathe

d2

}
0 ,
A\AV4 . | |
[y !

Inserting a caesura

Caesura marks can be created by overriding the 'text property of the BreathingSign object.
A curved caesura mark is also available.

\relative c'' {
\override BreathingSign #'text = \markup {
\musicglyph #"scripts.caesura.straight"
}
c8 e4. \breathe g8. el16 c4

\override BreathingSign #'text = \markup {
\musicglyph #"scripts.caesura.curved"

}

g8 e'4. \breathe g8. el6 c4

~

¢

See also
Music Glossary: Section “caesura” in Music Glossary.
Notation Reference: [Divisiones], page 286.
Snippets: Section “Expressive marks” in Snippets.

Internals Reference: Section “BreathingSign” in Internals Reference.

Falls and doits

Falls and doits can be added to notes using the \bendAfter command. The direction of the fall
or doit is indicated with a plus or minus (up or down). The number indicates the pitch interval
that the fall or doit will extend beyond the main note.

c2-\bendAfter #+4
c2-\bendAfter #-4
c2-\bendAfter #+8
c2-\bendAfter #-8

Chapter 1: Musical notation 93

N , /

)" 4 / /

£\ y £) 7 7 77 KN
[fan YA W] | | AN \
T

\
\

The dash - immediately preceding the \bendAfter command is required when writing falls
and doits.

Selected Snippets
Adjusting the shape of falls and doits

The shortest-duration-space property may have to be tweaked to adjust the shape of
falls and doits.

\relative c'' {
\override Score.SpacingSpanner #'shortest-duration-space = #4.0
c2-\bendAfter #+5
c2-\bendAfter #-3
c2-\bendAfter #+8
c2-\bendAfter #-6

}
0) /
)" 4 P)
/\ y £) [#) 7 7 [#)
[fan Y W] | | ~ | SN
SV | | | AN
U | | | v
See also

Music Glossary: Section “fall” in Music Glossary, Section “doit” in Music Glossary.

Snippets: Section “Expressive marks” in Snippets.

1.3.3 Lines

This section explains how to create various expressive marks that follow a linear path: glissandos,
arpeggios, and trills.

Glissando

A glissando is created by attaching \glissando to a note:

g2\glissando g'
c2\glissando c,

7

QL]

N @]

G

Different styles of glissandi can be created. For details, see Section 5.4.7 [Line styles],
page 405.

Selected Snippets

Contemporary glissando

A contemporary glissando without a final note can be typeset using a hidden note and cadenza
timing.
\relative c'' {

\time 3/4

\override Glissando #'style = #'zigzag

Chapter 1: Musical notation 94

c4 c
\cadenzaOn
c4\glissando
\hideNotes
c,,4
\unHideNotes
\cadenzaOff
\bar "|"

See also
Music Glossary: Section “glissando” in Music Glossary.
Notation Reference: Section 5.4.7 [Line styles], page 405.
Snippets: Section “Expressive marks” in Snippets.

Internals Reference: Section “Glissando” in Internals Reference.

Known issues and warnings

Printing text over the line (such as gliss.) is not supported.

Arpeggio
An arpeggio on a chord (also known as a broken chord) is denoted by appending \arpeggio to
the chord construct

<c e g c>1\arpeggio

)" 4

/\ (e O
N U
A\ 24
oJ -

Different types of arpeggios may be written. \arpeggioNormal reverts to a normal arpeggio:

<c e g c>2\arpeggio
\arpeggioArrowUp

<c e g c>2\arpeggio
\arpeggioArrowDown
<c e g c>2\arpeggio
\arpeggioNormal

<c e g c>2\arpeggio

-
N (o]
1q

N
I\

G

Special bracketed arpeggio symbols can be created:

Chapter 1: Musical notation 95

<c e g c>2
\arpeggioBracket

<c e g c>2\arpeggio
\arpeggioParenthesis
<c e g c>2\arpeggio
\arpeggioNormal

<c e g c>2\arpeggio

0

X r R [O O
@ ¢ EETS
¢ L& & &

Arpeggios can be explicitly written out with ties. For more information, see [Ties], page 35.

Predefined commands

\arpeggio, \arpeggioArrowUp, \arpeggioArrowDown, \arpeggioNormal, \arpeggioBracket,
\arpeggioParenthesis.

Selected Snippets
Creating cross-staff arpeggios in a piano staff

In a PianoStaff, it is possible to let an arpeggio cross between the staves by setting the
property PianoStaff.connectArpeggios.

\new PianoStaff \relative c'' <<
\set PianoStaff.connectArpeggios = ##t
\new Staff {

<c e g c>4\arpeggio
<g c e g>4\arpeggio
<e g c e>4\arpeggio
<c e g c>4\arpeggio
}
\new Staff {
\clef bass
\repeat unfold 4 {
<c,, e g c>4\arpeggio
}
}

>>

P
q»
Bvvihd

VAAA
AAA

VAAA
AAA

VAAA

|
)
S RS RS RS

Creating cross-staff arpeggios in other contexts

[)
o2

.
p_—
N (¢4

Cross-staff arpeggios can be created in contexts other than PianoStaff if the Span_
arpeggio_engraver is included in the Score context.

Chapter 1: Musical notation 96

\score {
\new StaffGroup {
\set Score.connectArpeggios = #i#t
<<
\new Voice \relative c' {
<c e>2\arpeggio
<d f>2\arpeggio
<c e>1\arpeggio
}
\new Voice \relative c {
\clef bass
<c g'>2\arpeggio
<b g'>2\arpeggio
<c g'>1\arpeggio
}
>>
}
\layout {
\context {
\Score
\consists "Span_arpeggio_engraver"

+
}

N @]

G

Pa'
-©-
>
4

AAAA
A/
AAA

VAAA

AAAA

) O
T O

Creating arpeggios across notes in different voices

An arpeggio can be drawn across notes in different voices on the same staff if the Span_
arpeggio_engraver is moved to the Staff context:
\new Staff \with {

\consists "Span_arpeggio_engraver"

+
\relative c' {
\set Staff.connectArpeggios = #i#t
<<
{ <e' g>4\arpeggio <d f> <d £>2 } \\
{ <d, f>2\arpeggio <g b>2 }
>>

=

[[av Y
J T

Chapter 1: Musical notation 97

See also
Music Glossary: Section “arpeggio” in Music Glossary .
Notation Reference: [Ties|, page 35.
Snippets: Section “Expressive marks” in Snippets.

Internals Reference: Section “Arpeggio” in Internals Reference, Section “PianoStaff” in In-
ternals Reference.

Known issues and warnings

It is not possible to mix connected arpeggios and unconnected arpeggios in one PianoStaff at
the same point in time.

The parenthesis-style arpeggio brackets do not work for cross-staff arpeggios.

Trills
Short trills without an extender line are printed with \trill; see [Articulations and ornamen-
tations|, page 81.

Longer trills with an extender line are made with \startTrillSpan and \stopTrillSpan:

d1”\startTrillSpan
d1l
c2\stopTrillSpan r2

G
i
¢
TR
|

In the following example, a trill is combined with grace notes. The syntax of this construct
and the method to precisely position the grace notes are described in [Grace notes|, page 75.

cl \afterGrace
di\startTrillSpan { c32[d]\stopTrillSpan }

e2 r2
ctrw
0] 2
)" 4 o> | o
/\ y £) [@] ~F e~ -
[[an YA W]
ANV
e

Trills that require an auxiliary note with an explicit pitch can be typeset with the
\pitchedTrill command. The first argument is the main note, and the second is the trilled
note, printed as a stemless note head in parentheses.

\pitchedTrill e2\startTrillSpan fis
d\stopTrillSpan

e~

)
Z

{
A §

P

.
I
p=18:C)
728

In the following example, the second pitched trill is ambiguous; the accidental of the trilled
note is not printed. As a workaround, the accidentals of the trilled notes can be forced. The
second measure illustrates this method:

Chapter 1: Musical notation 98

\pitchedTrill eis4\startTrillSpan fis
g\stopTrillSpan
\pitchedTrill eis4\startTrillSpan fis
g\stopTrillSpan
\pitchedTrill eis4\startTrillSpan fis
g\stopTrillSpan
\pitchedTrill eis4\startTrillSpan fis!
g\stopTrillSpan

dra dpa dpan dpas

g =
4

L |

5

Predefined commands
\startTrillSpan, \stopTrillSpan.

See also

Music Glossary: Section “trill” in Music Glossary.
Notation Reference: [Articulations and ornamentations|, page 81, [Grace notes|, page 75.
Snippets: Section “Expressive marks” in Snippets.

Internals Reference: Section “TrillSpanner” in Internals Reference.

1.4 Repeats

35 Il = Il

p | T |
b | | |

D P e —

13 /ﬁ

g -
5= 2 Ei—‘—g\J : 4
—_— e . :

S v\;/ — ;" Ir 77 ’

Repetition is a central concept in music, and multiple notations exist for repetitions. LilyPond
supports the following kinds of repeats:

volta The repeated music is not written out but enclosed between repeat bar lines. If the
repeat is at the beginning of a piece, a repeat bar line is only printed at the end of
the repeat. Alternative endings (volte) are printed left to right with brackets. This
is the standard notation for repeats with alternatives.

unfold The repeated music is fully written out, as many times as specified by repeatcount.
This is useful when entering repetitious music.

percent These are beat or measure repeats. They look like single slashes or percent signs.

tremolo This is used to write tremolo beams.

Chapter 1: Musical notation 99

1.4.1 Long repeats

This section discusses how to input long (usually multi-measure) repeats. The repeats can
take two forms: repeats enclosed between repeat signs; or written out repeats, used to input
repetitious music. Repeat signs can also be controlled manually.

Normal repeats
The syntax for a normal repeat is
\repeat volta repeatcount musicexpr

where musicexpr is a music expression. Alternate endings can be produced using
\alternative. In order to delimit the alternate endings, the group of alternatives must be
enclosed in a set of braces. If there are more repeats than there are alternate endings, the
earliest repeats are given the first alternative.

Normal repeats without alternate endings:

\repeat volta 2 { c4 de f }
c2 d
\repeat volta 2 { d4d e £ g }

i
iy

Normal repeats with alternate endings:

\repeat volta 4 { c4 de f }
\alternative {
{d2 e}
{f2 g}l
}
cl

7]
¢

7

4
=
|
|

ih

Repeats with upbeats can be entered in two ways:

\partial 4

e |

\repeat volta 4 { c2d | e2 £ | }
\alternative {

{gdggel
{a2d aaal b2. }
}
[1-3. Il 4

0 _ o . oo 2
S i | o m— C— i

[fan YA W] Wle | | | /N

:‘J_V | | I ! ' | |

or

Chapter 1: Musical notation

\partial 4
\repeat volta 4 { e4 | c2d | e2 £ | }
\alternative {

{ \partial 4*3 g4 g g }

{atd aaal b2. }

}
[1-3. || 4.
> o9 £

0) = 7 B— i

7 | Q| |
[(YA W] | | | Q| |
ANV | | ! | |
o ! '

Ties may be added to a second ending:

cl
\repeat volta 2 { c4 de f " }
\alternative {

{f24}
{ f2\repeatTie f, }
}
n | 1. Il 2
@ e - IAF;,

D = Q| | |
#D:I/ . | oI
ANV | | | | | | ! 7
oJ ! '

Selected Snippets

Shortening volta brackets

100

By default, the volta brackets will be drawn over all of the alternative music, but it is possible
to shorten them by setting voltaSpannerDuration. In the next example, the bracket only lasts

one measure, which is a duration of 3/4.

\relative c'' {
\time 3/4
cd cc

\set Score.voltaSpannerDuration = #(ly:make-moment 3 4)

\repeat volta 5 { d4 4 4 }
\alternative {

{
ed e e
f4 £ £
}
{gdggl
}
}
() 14 ",5 o
¢ | |
| I bl
U |

Adding volta brackets to additional staves

Chapter 1: Musical notation 101

The Volta_engraver by default resides in the Score context, and brackets for the repeat
are thus normally only printed over the topmost staff. This can be adjusted by adding the
Volta_engraver to the Staff context where the brackets should appear; see also the "Volta
multi staff" snippet.

<<
\new Staff { \repeat volta 2 { c¢'l } \alternative { c¢' } }
\new Staff { \repeat volta 2 { c'l } \alternative { c' } }
\new Staff \with { \consists "Volta_engraver" } { c'2 g' e' a' }
\new Staff { \repeat volta 2 { c'l } \alternative { c' } }

>>

1-2.

()

)" 4

4\ £}

[fan Y W]

P

[Y) o ©-

()

)" 4

4\ r £)

[[an Y W]

ANV

[y o ©
1-2.

() .

)" 4 |

4\ r £) |

[[an YA W -~ [#)

ANV e

[Y) <

()

)" 4

/\ r £)

[fan YA W]

SV

() © -©

See also

4

Music Glossary: Section “repeat” in Music Glossary, Section “volta” in Music Glossary.

Notation Reference: [Bar lines|, page 68, Section 5.1.3 [Modifying context plug-ins], page 378.
Snippets: Section “Repeats” in Snippets.

Internals Reference: Section “VoltaBracket” in Internals Reference, Section “RepeatedMu-
sic” in Internals Reference, Section “VoltaRepeatedMusic” in Internals Reference, Section “Un-
foldedRepeatedMusic” in Internals Reference.

Known issues and warnings
A nested repeat like

\repeat ...
\repeat ...
\alternative

is ambiguous, since it is is not clear to which \repeat the \alternative belongs. This ambiguity
is resolved by always having the \alternative belong to the inner \repeat. For clarity, it is
advisable to use braces in such situations.

Timing information is not remembered at the start of an alternative, so after a repeat timing
information must be reset by hand; for example, by setting Score.measurePosition or entering
\partial. Similarly, slurs are also not repeated.

Chapter 1: Musical notation 102

Manual repeat marks

Note: These methods are only used for displaying unusual repeat constructs, and may produce
unexpected behavior. In most cases, repeats should be created using the standard \\repeat
command or by printing the relevant bar lines. For more information, see [Bar lines], page 68.

The property repeatCommands can be used to control the layout of repeats. Its value is a
Scheme list of repeat commands.

start-repeat
Print a | : bar line.

cl
\set Score.repeatCommands = #'(start-repeat)
d4d e f g
cl
o
0} o —
R €S T— | O
[(oY W] Ml | |
ANV | | ! !
oJ

As per standard engraving practice, repeat signs are not printed at the beginning
of a piece.

end-repeat
Print a :| bar line:

cl
d4d e f g
\set Score.repeatCommands = #'(end-repeat)
cl
©-
n —_
'_
—— "
[[YA W | | |
ANV | | |
¢
(volta number) ... (volta #f)

Create a new volta with the specified number. The volta bracket must be explicitly
terminated, or it will not be printed.

f4 gab

\set Score.repeatCommands
gd aga

\set Score.repeatCommands
cl

#' ((volta "2"))

#'((volta #f))

]

[o £ r 3 -
A — !

far W O
\\37) '

oJ

ey

7

Multiple repeat commands may occur at the same point:
f4d gab
\set Score.repeatCommands = #'((volta "2, 5") end-repeat)
gd aga

Chapter 1: Musical notation 103

cl
\set Score.repeatCommands = #'((volta #f) (volta "95") end-repeat)
bl

\set Score.repeatCommands

#' ((volta #£))

[2,5 Il 95
n o .,'.# & & o O
)" 4 | | | | |
7\ y £} | | Q| | Q| |
[fan YA W] | olN /N
sV ! | | | |
oJ

Text can be included with the volta bracket. The text can be a number or numbers or markup
text, see Section 1.8.2 [Formatting text], page 167. The simplest way to use markup text is to
define the markup first, then include the markup in a Scheme list.

voltaAdLib = \markup { 1. 2. 3... \text \italic { ad 1lib. } }
\relative c'' {

cl
\set Score.repeatCommands = #(list(list 'volta voltaAdLib) 'start-repeat)
cd bde
\set Score.repeatCommands = #'((volta #f) (volta "4.") end-repeat)
f1
\set Score.repeatCommands = #'((volta #f))
}
A [1.2.3. ad lib. I &
GHeoe feerl
o o .

Selected Snippets
Printing a repeat sign at the beginning of a piece
A | : bar line can be printed at the beginning of a piece, by overriding the relevant property:

\relative c'' {
\once \override Score.BreakAlignment #'break-align-orders =

#(make-vector 3 '(instrument-name
left-edge
ambitus
span-bar
breathing-sign
clef
key-signature
time-signature

staff-bar
custos
span-bar))

\bar "|[:"

cl

d1i

dd e fg

Chapter 1: Musical notation 104

¢

«)
.

G

See also
Notation Reference: [Bar lines|, page 68, Section 1.8.2 [Formatting text], page 167.
Snippets: Section “Repeats” in Snippets.

Internals Reference: Section “VoltaBracket” in Internals Reference, Section “RepeatedMu-
sic” in Internals Reference, Section “VoltaRepeatedMusic” in Internals Reference.

Written-out repeats

By using the unfold command, repeats can be used to simplify the writing out of repetitious
music. The syntax is

\repeat unfold repeatcount musicexpr

where musicexpr is a music expression and repeatcount is the number of times musicexpr is
repeated.

cl
\repeat unfold 2 { c4 d e £ }
cl

0 o o
#o: O
ANV - l
[Y)

Unfold repeats can be made with alternate endings. If there are more repeats than there are
alternate endings, the first alternative ending is applied to the earliest endings.

cl
\repeat unfold 2 { g4 f e d }
\alternative {

{ cis2 g' }
{ cis,2 b }
}
cl
() . . .
)" 4 | ! | |
/\ o O | | | | |
| | I d | — I
[y} i e o ©-
See also

Snippets: Section “Repeats” in Snippets.

Internals Reference: Section “RepeatedMusic” in Internals Reference, Section “Unfolde-
dRepeatedMusic” in Internals Reference.

1.4.2 Short repeats

This section discusses how to input short repeats. Short repeats can take two basic forms:
repeats of a single note to two measures, represented by slashes or percent signs; and tremolos.

Chapter 1: Musical notation 105

Percent repeats

Repeated short patterns of notes are supported. The music is printed once, and the pattern is
replaced with a special sign. Patterns that are shorter than one measure are replaced by slashes,
and patterns of one or two measures are replaced by percent-like signs. The syntax is
\repeat percent number musicexpr
where musicexpr is a music expression.
\repeat percent 4 { c4 }
\repeat percent 2 { b4 a g £ }
\repeat percent 2 { c2 es | f4 fis g c | }

0 .
o €77 EEEe=E= e
g | o be efe o]

Selected Snippets
Percent repeat counter

Measure repeats of more than two repeats can get a counter when the convenient property
is switched, as shown in this example:
\relative c'' {

\set countPercentRepeats = ##t

\repeat percent 4 { c1 }

}
0) 2 4
)" 4
/\ o O 0 LY 4 o g
| y L y L y L
A\V4
JJ

Percent repeat count visibility

Percent repeat counters can be shown at regular intervals by setting the context property
repeatCountVisibility.
\relative c'' {

\set countPercentRepeats = ##t

\set repeatCountVisibility = #(every-nth-repeat-count-visible 5)

\repeat percent 10 { cl } \break

\set repeatCountVisibility = #(every-nth-repeat-count-visible 2)

\repeat percent 6 { c1 di }

}
() 5 10
)\l y £) [Q) o g o g o g O 4 . Y 4 LY 4 [V 4 [V 4
@ A U7 y L y L y L y L y L . y L y L y L
oJ

11 Q 2 . 4 6
T B % % % %

Isolated percent repeats

Isolated percents can also be printed. This is done by entering a multi-measure rest with a
different print function:

Chapter 1: Musical notation 106

\relative c'' {
\override MultiMeasureRest #'stencil
= #ly:multi-measure-rest::percent
\override MultiMeasureRest #'thickness = #0.48
R1

See also

Music G].OSS&I‘YZ Section “percent repeat” in Music G]OSS&I‘V Section “simile” in Music
)
G]OSS&I'V.

Snippets: Section “Repeats” in Snippets.

Internals Reference: Section “RepeatSlash” in Internals Reference, Section “PercentRepeat”
in Internals Reference, Section “DoublePercentRepeat” in Internals Reference, Section “Dou-
blePercentRepeatCounter” in Internals Reference, Section “PercentRepeatCounter” in Internals
Reference, Section “PercentRepeatedMusic” in Internals Reference.

Known issues and warnings

Only three kinds of percent repeats are supported: a single slash representing a single beat
(regardless of the duration of the repeated notes); a single slash with dots representing one full
measure; and two slashes with dots crossing a bar line representing two full measures. Neither
multiple slashes representing single beat repeats consisting of sixteenth or shorter notes, nor two
slashes with dots representing single beat repeats consisting of notes of varying durations, are
supported.

Tremolo repeats

Tremolos can take two forms: alternation between two chords or two notes, and rapid repetition
of a single note or chord. Tremolos consisting of an alternation are indicated by adding beams
between the notes or chords being alternated, while tremolos consisting of the rapid repetition
of a single note are indicated by adding beams or slashes to a single note.

To place tremolo marks between notes, use \repeat with tremolo style:

\repeat tremolo 8 { c16 d }
\repeat tremolo 6 { c16 4 }
\repeat tremolo 2 { c16 d }

0
I

9
\
?

G

The \repeat tremolo syntax expects exactly two notes within the braces, and the number
of repetitions must correspond to a note value that can be expressed with plain or dotted notes.
Thus, \repeat tremolo 7 is valid and produces a double dotted note, but \repeat tremolo 9
is not.

The duration of the tremolo equals the duration of the braced expression multiplied by the
number of repeats: \repeat tremolo 8 { c16 d16 } gives a whole note tremolo, notated as two
whole notes joined by tremolo beams.

Chapter 1: Musical notation 107

There are two ways to put tremolo marks on a single note. The \repeat tremolo syntax is
also used here, in which case the note should not be surrounded by braces:

\repeat tremolo 4 c'16

A

 J

The same output can be obtained by adding ‘: [number]’ after the note. The number indicates
the duration of the subdivision, and it must be at least 8. A number value of 8 gives one line
across the note stem. If the length is omitted, the last value (stored in tremoloFlags) is used

c2:8 c:32
c: C:

r) 7 (7] 7

0

See also
Snippets: Section “Repeats” in Snippets.

Known issues and warnings

Cross-staff tremolos do not work well.

1.5 Simultaneous notes

~—~ —~
A I B N U B e R AT S S ¥
i e i P | A S e S E G
4 4
f P — rp ~
BE e = e e T e e
SEIE R e T\
£
w g bdT DT e bee e £ e
o ——p—r—— L |— =
n +4r
— I T T T 18| WY

%. i" i' e e
o b bV

Polyphony in music refers to having more than one voice occurring in a piece of music.
Polyphony in LilyPond refers to having more than one voice on the same staff.

1.5.1 Single voice

This section discusses simultaneous notes inside the same voice.

Chapter 1: Musical notation 108

Chorded notes

A chord is formed by enclosing a set of pitches between < and >. A chord may be followed by a
duration and/or a set of articulations, just like simple notes:

<c e g>2 <c f a>4-> <e g c>-.

() L

=

Relative mode can be used for pitches in chords. The octave of each pitch is chosen using
the preceding pitch as a reference except in the case of the first pitch in a chord: the reference
for the first pitch is the first pitch of the preceding chord.

For more information about chords, see Section 2.7 [Chord notation|, page 255.

See also
Music Glossary: Section “chord” in Music Glossary.
Learning Manual: Section “Combining notes into chords” in Learning Manual.
Notation Reference: Section 2.7 [Chord notation], page 255.

Snippets: Section “Simultaneous notes” in Snippets.

Simultaneous expressions

One or more music expressions enclosed in double angle brackets are taken to be simultaneous.
If the first expression begins with a single note or if the whole simultaneous expression appears
explicitly within a single voice, the whole expression is placed on a single staff; otherwise the
elements of the simultaneous expression are placed on separate staves.

The following examples show simultaneous expressions on one staff:

\new Voice { 7% explicit single voice
<< {a4 b g2} {d4 g c,2} >>

% single first note
a<< {ad bgr {dd gc,} >

This can be useful if the simultaneous sections have identical rhythms, but attempts to attach
notes with different durations to the same stem will cause errors.

The following example shows how simultaneous expressions can generate multiple staves
implicitly:
% no single first note
<< {a4 b g2} {d4 g2 c,4} >>

Chapter 1: Musical notation 109

f

e ¢
®

r
Here different rhythms cause no problems.

Clusters

A cluster indicates a continuous range of pitches to be played. They can be denoted as the
envelope of a set of notes. They are entered by applying the function \makeClusters to a
sequence of chords, e.g.,

\makeClusters { <g b>2 <c g'> }

bed

oJ

Ordinary notes and clusters can be put together in the same staff, even simultaneously. In
such a case no attempt is made to automatically avoid collisions between ordinary notes and
clusters.

See also

Music Glossary: Section “cluster” in Music Glossary.
Snippets: Section “Simultaneous notes” in Snippets.

Internals Reference: Section “ClusterSpanner” in Internals Reference, Section “ClusterSpan-
nerBeacon” in Internals Reference, Section “Cluster_spanner_engraver” in Internals Reference.

Known issues and warnings

Clusters look good only if they span at least two chords; otherwise they appear too narrow.

Clusters do not have a stem and cannot indicate durations by themselves, but the length of
the printed cluster is determined by the durations of the defining chords. Separate clusters need
a separating rest between them.

Clusters do not produce MIDI output.
1.5.2 Multiple voices

This section discusses simultaneous notes in multiple voices or multiple staves.

Single-staff polyphony
Ezxplicitly instantiating voices
The basic structure needed to achieve multiple independent voices in a single staff is illus-
trated in the following example:
\new Staff <<
\new Voice = "first"
{ \voiceOne r8 r16 g e8. f16 g8[c,] f el6 d }

\new Voice= "second"
{ \voiceTwo d16 ¢ d8~ d16 b c8~ c16 b c8~ cl16 b8. }

>>
n v 7
A —"
[fan Y W ~— ~— .
D I
[Y) —

Chapter 1: Musical notation 110

Here, voices are instantiated explicitly and are given names. The \voiceOne ... \voiceFour
commands set up the voices so that first and third voices get stems up, second and fourth voices
get stems down, third and fourth voice note heads are horizontally shifted, and rests in the
respective voices are automatically moved to avoid collisions. The \oneVoice command returns
all the voice settings to the neutral default directions.

Temporary polyphonic passages
A temporary polyphonic passage can be created with the following construct:

<< { \voiceOne ... }
\new Voice { \voiceTwo ... }
>> \oneVoice

Here, the first expression within a temporary polyphonic passage is placed into the Voice
context which was in use immediately before the polyphonic passage, and that same Voice
context continues after the temporary section. Other expressions within the angle brackets are
assigned to distinct temporary voices. This allows lyrics to be assigned to one continuing voice
before, during and after a polyphonic section:

<<
\new Voice = "melody" {
a4
<<
{
\voiceOne
g f
}
\new Voice {
\voiceTwo
d2
}
>>
\oneVoice
ed
}
\new Lyrics \lyricsto "melody" {
This is my song.
}

>>

g

-

This is my song.

Here, the \voiceOne and \voiceTwo commands are required to define the settings of each
voice.

The double backslash construct
The << {...} \\ {...} >> construct, where the two (or more) expressions are separated by
double backslashes, behaves differently to the similar construct without the double backslashes:

all the expressions within this contruct are assigned to new Voice contexts. These new Voice
contexts are created implicitly and are given the fixed names "1", "2" etc.

The first example could be typeset as follows:

Chapter 1: Musical notation 111

<<

{8 r16 g e8. f16 g8[c,] f e16 d }

A\

{ d16 c d8~ d16 b c8~ c16 b c8~ cl16 b8. }
>>

n v 7

—

[[an YA W] ~— ~— .

ANV |

eJ =~

This syntax can be used where it does not matter that temporary voices are created and
then discarded. These implicitly created voices are given the settings equivalent to the effect of
the \voiceOne ... \voiceFour commands, in the order in which they appear in the code.

In the following example, the intermediate voice has stems up, therefore we enter it in the
third place, so it becomes voice three, which has the stems up as desired. Spacer rests are used
to avoid printing doubled rests.
<<

{r8gg gg f16 ees £f8 d }

\\

{ees,8reesrdrdr}

A\
{d'8 s csbessas}
>>

7
- - 7] p 7] 7] 7]
H 7 7 p 7 P 7
In all but the simplest works it is advisable to create explicit Voice contexts as explained

in Section “Contexts and engravers” in Learning Manual and Section “Explicitly instantiating
voices” in Learning Manual.

Identical rhythms

In the special case that we want to typeset parallel pieces of music that have the same rhythm,
we can combine them into a single Voice context, thus forming chords. To achieve this, enclose
them in a simple simultaneous music construct within an explicit voice:

\new Voice <<
{ e4 f8 d e16 f g8 d
{ c4 d8 bcl6de8b
>>

4 %}
4 3}

This method leads to strange beamings and warnings if the pieces of music do not have the
same rhythm.

Predefined commands

\voiceOne, \voiceTwo, \voiceThree, \voiceFour, \oneVoice.

Chapter 1: Musical notation 112

See also

Learning Manual: Section “Voices contain music” in Learning Manual, Section “Explicitly
instantiating voices” in Learning Manual.

Notation Reference: [Percussion staves|, page 245, [Invisible rests|, page 39, [Stems|, page 155.

Snippets: Section “Simultaneous notes” in Snippets.

Voice styles

Voices may be given distinct colors and shapes, allowing them to be easily identified:

<<
{ \voiceOneStyle d4 c2 b4 }
\\
{ \voiceTwoStyle e,2 e }

\\
{ \voiceThreeStyle b2. c4 }

\\

{ \voiceFourStyle g'2 g }
>>

) L1

g = I[=

The \voiceNeutralstyle command is used to revert to the standard presentation.

Predefined commands

\voice(OneStyle, \voiceTwoStyle, \voiceThreeStyle, \voiceFourStyle,
\voiceNeutralStyle.

See also

Learning Manual: Section “I'm hearing Voices” in Learning Manual, Section “Other sources
of information” in Learning Manual.

Snippets: Section “Simultaneous notes” in Snippets.

Collision resolution

The note heads of notes in different voices with the same pitch, same note head and opposite
stem direction are automatically merged, but notes with different note heads or the same stem
direction are not. Rests opposite a stem in a different voice are shifted vertically.
<<
{
c8 dedcdcé
g'2 fis
PN\ {
c2 c8. bl6 c4
e,2r
FA\ A

\oneVoice
s1
e8 a b c d2

>>

Chapter 1: Musical notation 113

() — | AAf-—r—_l-H',J
g - oy

Notes with different note heads may be merged, with the exception of half-note heads and
quarter-note heads:
<<
{
\mergeDifferentlyHeadedOn
c8 dedcdc4
g'2 fis
P\ L
c2 c8. bl6 c4
e,2r
FANA
\oneVoice
sl
e8 a b c d2

() — | &JA——-\——-IH',J

Note heads with different dots may be merged:
<<

{
\mergeDifferentlyHeadedOn
\mergeDifferentlyDottedOn
c8 dedcdcé
g'2 fis

P\ A
c2 c8. bl6 c4
e,2r

AN A
\oneVoice
si
e8 a b ¢ d2

) | | A‘f'—r—_'“’]

ANV I |

-

The half note and eighth note at the start of the second measure are incorrectly merged
because \mergeDifferentlyHeadedOn cannot successfully complete the merge when three or
more notes line up in the same column, and in this case a warning is given. To allow the
merge to work properly a \shift must be applied to the note that should not be merged. Here,
\shiftOn is applied to move the top g out of the column, and \mergeDifferentlyHeadedOn
then works properly.

Chapter 1: Musical notation 114

<<

\mergeDifferentlyHeadedOn
\mergeDifferentlyDottedOn
c8dedcdc4
\shiftOn
g'2 fis
AN A
c2 c8. bl6 c4
e,2 r
P\ A
\oneVoice
sl
e8 a b c d2

The \shiftOn, \shiftOnn, and \shiftOnnn commands specify the degree to which chords
of the current voice should be shifted. The outer voices (normally: voices one and two) have
\shift0ff, while the inner voices (three and four) have \shiftOn. \shiftOnn and \shiftOnnn
define further shift levels.

Notes are only merged if they have opposing stem directions (e.g. in Voice 1 and 2).

Predefined commands

\mergeDifferentlyDottedOn, \mergeDifferentlyDotted0ff, \mergeDifferentlyHeadedOn,
\mergeDifferentlyHeadedOff.

\shiftOn, \shiftOnn, \shiftOnnn, \shiftOff.

Selected Snippets
Additional voices to avoid collisions

In some instances of complex polyphonic music, additional voices are necessary to prevent
collisions between notes. If more than four parallel voices are needed, additional voices can be
added by defining a variable using the Scheme function context-spec-music.

voiceFive = #(context-spec-music (make-voice-props-set 4) 'Voice)
\relative c'' {
\time 3/4 \key d \minor \partial 2

<<

{ \voiceOne
a4. a8
e'd ed. e8
f4 d4. c8

P\ {
\voiceThree
£,2

besd a2

Chapter 1: Musical notation 115

a4 s2
P\ {

\voiceFive

s2

gé g2

f4 £2
P\ {

\voiceTwo

d2

d4 cis2

d4 bes2

>>

A

2 NIRRT

4
A 7

Forcing horizontal shift of notes

When the typesetting engine cannot cope, the following syntax can be used to override
typesetting decisions. The units of measure used here are staff spaces.

\relative c' <<

{
<d g>2 <d g>

}

A\

{
<b £'>2
\once \override NoteColumn #'force-hshift = #1.7
<b £'>2

}

>>

N (@

[#) 7

G e
-

See also
Music Glossary: Section “polyphony” in Music Glossary.

Learning Manual: Section “Multiple notes at once” in Learning Manual, Section “Voices
contain music” in Learning Manual, Section “Collisions of objects” in Learning Manual.

Snippets: Section “Simultaneous notes” in Snippets.

Internals Reference: Section “NoteColumn” in Internals Reference, Section “NoteCollision”
in Internals Reference, Section “RestCollision” in Internals Reference.

Chapter 1: Musical notation 116

Known issues and warnings

When using \mergeDifferentlyHeadedOn with an upstem eighth or a shorter note, and a
downstem half note, the eighth note stem gets a slightly wrong offset because of the different
width of the half note head symbol.

There is no support for chords where the same note occurs with different accidentals in the
same chord. In this case, it is recommended to use enharmonic transcription, or to use special
cluster notation (see [Clusters], page 109).

Automatic part combining

Automatic part combining is used to merge two parts of music onto a staff. It is aimed at

typesetting orchestral scores. When the two parts are identical for a period of time, only one

is shown. In places where the two parts differ, they are typeset as separate voices, and stem

directions are set automatically. Also, solo and a due parts are identified and marked by default.
The syntax for part combining is:

\partcombine musicexprl musicexpr2

The following example demonstrates the basic functionality of the part combiner: putting
parts on one staff and setting stem directions and polyphony. The same variables are used for
the independent parts and the combined staff.

instrumentOne = \relative c' {

cd def
R1
d'4 c b a
b4 g2 f4
el
}
instrumentTwo = \relative g' {
R1

gd abc
dcba
g fCe) d
el
}
<<

\new Staff \instrumentOne

\new Staff \instrumentTwo

\new Staff \partcombine \instrumentOne \instrumentTwo
>>

¢

o]

tr
:
i
g

¢

e U PO
|
Y
f
'

Chapter 1: Musical notation 117

The notes in the third measure appear only once, although they were specified in both parts.
Stem, slur, and tie directions are set automatically, depending whether there is a solo or unison.
When needed in polyphony situations, the first part (with context called one) always gets up
stems, while the second (called two) always gets down stems. In solo situations, the first and
second parts get marked with ‘Solo” and ‘Solo II’, respectively. The unisono (a due) parts are
marked by default with the text “a2”.

Both arguments to \partcombine will be interpreted as Voice contexts. If using relative
octaves, \relative should be specified for both music expressions, i.e.,

\partcombine
\relative ... musicexprl
\relative ... musicexpr2

A \relative section that is outside of \partcombine has no effect on the pitches of musicexprl
and musicexpr?2.

Selected Snippets
Combining two parts on the same staff

The part combiner tool (\partcombine command) allows the combination of several different
parts on the same staff. Text directions such as "solo" or "a2" are added by default; to remove
them, simply set the property printPartCombineTexts to "false". For vocal scores (hymns),
there is no need to add "solo"/"a2" texts, so they should be switched off. However, it might be
better not to use it if there are any solos, as they won’t be indicated. In such cases, standard
polyphonic notation may be preferable.

This snippet presents the three ways two parts can be printed on a same staff: standard
polyphony, \partcombine without texts, and \partcombine with texts.

musicUp = \relative c'' {
\time 4/4
a4 c4.(g8) a4 |
gde' g,(a8 b) |
c b a2.

musicDown = \relative c'' {
g4 e4.(d8) c4 |
r2 g'4(£8 e) |
d2 \stemDown a

¥
\score {
<<
<<
\new Staff {
\set Staff.instrumentName = "Standard polyphony "
<< \musicUp \\ \musicDown >>
+
\new Staff \with { printPartCombineTexts = ##f } {
\set Staff.instrumentName = "PartCombine without texts "
\partcombine \musicUp \musicDown
}

\new Staff {
\set Staff.instrumentName = "PartCombine with texts "

Chapter 1: Musical notation 118

\partcombine \musicUp \musicDown

}
>>
>>
\layout {
indent = 6.0\cm
\context {
\Score
\override SystemStartBar #'collapse-height = #30
}
}
}
/T e e
Standard polyphony s) o 2 .
J | f_/p r - lk f];
/I N W s
PartCombine without texts p— L o oo —
JJ L7 ~—_" F —

\ |
)4 | N | | | | |
PartCombine with texts :@_—‘%ﬂl“i_" . _i_d_,}—

Changing partcombine texts

When using the automatic part combining feature, the printed text for the solo and unison
sections may be changed:

\new Staff <<
\set Staff.soloText = #"girl"
\set Staff.soloIIText = #"boy"
\set Staff.aDueText = #"together"
\partcombine
\relative c'' {
gdgrr
a2 g
}
\relative c'' {
rd r a(b)
a2 g
}

>>

n girl boy together
) | |)
|

G CJ el

e) |

Q]

Chapter 1: Musical notation 119

See also

Music Glossary: Section “a due” in Music Glossary, Section “part” in Music Glossary.
Notation Reference: Section 1.6.3 [Writing parts], page 137.
Snippets: Section “Simultaneous notes” in Snippets.

Internals Reference: Section “PartCombineMusic” in Internals Reference, Section “Voice” in
Internals Reference.

Known issues and warnings

\partcombine can only accept two voices.

When printPartCombineTexts is set, if the two voices play the same notes on and off, the
part combiner may typeset a2 more than once in a measure.

\partcombine cannot be inside \times.
\partcombine cannot be inside \relative.

Internally, the \partcombine interprets both arguments as Voices and decides when the
parts can be combined. When they have different durations they cannot be combined and
are given the names one and two. Consequently, if the arguments switch to differently named
Section “Voice” in Internals Reference contexts, the events in those will be ignored. Likewise,
partcombining isn’t designed to work with lyrics; when one of the voices is explicitly named in
order to attach lyrics to it, the partcombining stops working.

\partcombine only observes onset times of notes. It cannot determine whether a previously
started note is playing or not, leading to various problems.

Writing music in parallel

Music for multiple parts can be interleaved in input code. The function \parallelMusic accepts
a list with the names of a number of variables to be created, and a musical expression. The
content of alternate measures from the expression become the value of the respective variables,
so you can use them afterwards to print the music.

[Note: Bar checks | must be used, and the measures must be of the same length.

\parallelMusic #'(voiceA voiceB voiceC) {

% Bar 1

r8 g'l6 c'' e'' g' c'' e'' r8 g'16 c'' e'' g' c'' e'" |
rl6 e'8." e'4 rl6 e'8." e'4 |
c'2 c'2 |
% Bar 2

r8 a'i6 4'' f'*t a' 4'' f'*' r8 a'16 d'' £'' a' d4'' £'' |
rl6 d4'8.~ d'4 rl6 d4d'8.” d'4 |
c'2 c'2 |

}
\new StaffGroup <<
\new Staff << \voiceA \\ \voiceB >>
\new Staff { \clef bass \voiceC }
>>

Chapter 1: Musical notation 120

SrIMN.. P Par /M Pasr)
I TP—r Tp—T

Relative mode may be used. Note that the \relative command is not used inside
\parallelMusic itself. The notes are relative to the preceding note in the voice, not to the
previous note in the input — in other words, relative notes for voiceA ignore the notes in voiceB.

\parallelMusic #'(voiceA voiceB voiceC) {

% Bar 1

r8 gl6 ceg, cer8g,l16ceg, ce |
116 8.~ e4 r16 8. e4 |
c2 c |
% Bar 2

r8 a,16 d f a, d f r8 a,16 d f a, d f |
rli6 d8.7 d4 ri6 d8.7 d4 |
c2 c |
}

\new StaffGroup <<
\new Staff << \relative c'' \voiceA \\ \relative c¢' \voiceB >>
\new Staff \relative c¢' { \clef bass \voiceC }

’ SrI PR A Papr M Panr]
R i 7 N

N [)
N/
oTe
-
N |®]

\

This works quite well for piano music. This example maps four consecutive measures to four
variables:

global = {
\key g \major
\time 2/4

}

\parallelMusic #'(voiceA voiceB voiceC voiceD) {
% Bar 1
a8 b c d I
d4 e |
cl6 d e fis d e fis g |
ad a |
% Bar 2
e8 fis g a |
fis4 g |

|

el6 fis g a fisgab

Chapter 1: Musical notation 121

a4 a

% Bar 3 ...
}

\score {
\new PianoStaff <<
\new Staff {

\global
<<
\relative c'' \voiceA
\\
\relative c' \voiceB
>>

}
\new Staff {
\global \clef bass
<<
\relative c¢ \voiceC
\\

\relative c \voiceD
>>

) 4 p— _J—_J m

See also
Learning Manual: Section “Organizing pieces with variables” in Learning Manual.

Snippets: Section “Simultaneous notes” in Snippets.

1.6 Staff notation

Trumpet Bb

Tambourine

Piano

.Fﬁ
PN
[10N
PN
TT®
PN
| 18R
PN
™
P

Chapter 1: Musical notation 122

This section explains how to influence the appearance of staves, how to print scores with
more than one staff, and how to add tempo indications and cue notes to staves.

1.6.1 Displaying staves

This section describes the different methods of creating and grouping staves.

Instantiating new staves

Staves (singular: staff) are created with the \new or \context commands. For details, see
Section 5.1.2 [Creating contexts], page 377.

The basic staff context is Staff:
\new Staff { c4 de f }

The DrumStaff context creates a five-line staff set up for a typical drum set. Each instrument
is shown with a different symbol. The instruments are entered in drum mode following a
\drummode command, with each instrument specified by name. For details, see [Percussion
staves|, page 245.

\new DrumStaff {
\drummode { cymc hh ss tomh }

~
I
I

X 1
I I
|

RhythmicStaff creates a single-line staff that only displays the rhythmic values of the input.
Real durations are preserved. For details, see [Showing melody rhythms|, page 51.

\new RhythmicStaff { c4 d e f }

edddd]

TabStaff creates a tablature with six strings in standard guitar tuning. For details, see
[Default tablatures], page 217.

\new TabStaff { c4 d e f }

8—10—12—13

)
A%

o) <

There are two staff contexts specific for the notation of ancient music: MensuralStaff and
VaticanaStaff. They are described in [Pre-defined contexts], page 275.

The GregorianTranscriptionStaff context creates a staff to notate modern Gregorian
chant. It does not show bar lines.

Chapter 1: Musical notation 123

\new GregorianTranscriptionStaff { c4 d e f e d }

New single staff contexts may be defined. For details, see Section 5.1.5 [Defining new con-
texts|, page 380.

See also

Music Glossary: Section “staft” in Music Glossary, Section “staves” in Music Glossary.

Notation Reference: Section 5.1.2 [Creating contexts|, page 377, [Percussion staves|, page 245,
[Showing melody rhythms|, page 51, [Default tablatures|, page 217, [Pre-defined contexts],
page 275, [Staff symbol], page 128, [Gregorian chant contexts|, page 284, [Mensural contexts],
page 277, Section 5.1.5 [Defining new contexts|, page 380.

Snippets: Section “Staff notation” in Snippets.

Internals Reference: Section “Staff” in Internals Reference, Section “DrumStaff” in Inter-
nals Reference, Section “GregorianTranscriptionStaff” in Internals Reference, Section “Rhyth-
micStaff” in Internals Reference, Section “TabStaff” in Internals Reference, Section “Mensural-
Staft” in Internals Reference, Section “VaticanaStaff” in Internals Reference, Section “StaffSym-
bol” in Internals Reference.

Grouping staves

Various contexts exist to group single staves together in order to form multi-stave systems. Each
grouping context sets the style of the system start delimiter and the behavior of bar lines.

If no context is specified, the default properties will be used: the group is started with a
vertical line, and the bar lines are not connected.

<<
\new Staff { c1 c }

\new Staff { c1 ¢ }
>>

<« [@)

p—_—
N @4

e AP

In the StaffGroup context, the group is started with a bracket and bar lines are drawn
through all the staves.

\new StaffGroup <<
\new Staff { c1 c }
\new Staff { c1 ¢ }

>>

Chapter 1: Musical notation 124

)" 4

/\ o O [@)
U

ANV

[Y)

)" 4

£\ o O [Q)
[[an Y W]

ANV

[y

In a ChoirStaff, the group starts with a bracket, but bar lines are not connected.
\new ChoirStaff <<

\new Staff { cl1 ¢ }
\new Staff { cl1 ¢ }

>>

)" 4

/\ o O O
U

ANV

[Y)

)" 4

£\ o O O
[[an Y W]

ANV

[y

In a GrandStaff, the group begins with a brace, and bar lines are connected between the
staves.
\new GrandStaff <<

\new Staff { cl c }

\new Staff { cl c }

>>
0
/\ o O O
[fan YA W]
ANV,
()
)" 4
£\ o O [Q)
U
ANV
[Y)

The PianoStaff is identical to a GrandStaff, except that it supports printing the instrument
name directly. For details, see [Instrument names]|, page 140.

\new PianoStaff <<
\set PianoStaff.instrumentName = #"Piano"
\new Staff { c1 c }
\new Staff { cl1 c }

>>

(s O O

Piano

(o O O

e U

Each staff group context sets the property systemStartDelimiter to one of the following
values: SystemStartBar, SystemStartBrace, or SystemStartBracket. A fourth delimiter,
SystemStartSquare, is also available, but it must be explicitly specified.

New staff group contexts may be defined. For details, see Section 5.1.5 [Defining new con-
texts|, page 380.

Chapter 1: Musical notation 125

Selected Snippets
Use square bracket at the start of a staff group

The system start delimiter SystemStartSquare can be used by setting it explicitly in a
StaffGroup or ChoirStaffGroup context.

\score {
\new StaffGroup { <<
\set StaffGroup.systemStartDelimiter = #'SystemStartSquare
\new Staff { c'4 4' e' £' }
\new Staff { c'4 d' e' £' }
>> }

p_—
N (@4

))
\ W7 I |

o @

e U

Display bracket with only one staff in a system

If there is only one staff in one of the staff types ChoirStaff or StaffGroup, the bracket
and the starting bar line will not be displayed as standard behavior. This can be changed by
overriding the relevant properties.

Note that in contexts such as PianoStaff and GrandStaff where the systems begin with a
brace instead of a bracket, another property has to be set, as shown on the second system in
the example.

\markup \left-column {
\score {
\new StaffGroup <<
% Must be lower than the actual number of staff lines
\override StaffGroup.SystemStartBracket #'collapse-height = #1
\override Score.SystemStartBar #'collapse-height = #1
\new Staff {
c'l
3
>>
\layout { }
b
\null
\score {
\new PianoStaff <<
\override PianoStaff.SystemStartBrace #'collapse-height = #1
\override Score.SystemStartBar #'collapse-height = #1
\new Staff {
c'l
X
>>
\layout { }
b

Chapter 1: Musical notation 126

}

Q

7\ £}

[fan Y W]

SV

[Y) o
O

/\ ' £)

[fan Y W]

SV

() o

Mensurstriche layout (bar lines between the staves)

The mensurstriche-layout where the bar lines do not show on the staves but between staves
can be achieved with a StaffGroup instead of a ChoirStaff. The bar line on staves is blanked
out by setting the transparent property.

global = {
\override Staff.BarLine #'transparent = ##t
sl s

% the final bar line is not interrupted
\revert Staff.BarLine #'transparent
\bar "[."
}
\new StaffGroup \relative c'' {
<<
\new Staff { << \global { c1 c } > }
\new Staff { << \global { c ¢ } > }
>>

(O O
\ U7

P AP

See also

Music Glossary: Section “brace” in Music Glossary, Section “bracket” in Music Glossary,
Section “grand staff” in Music Glossary.

Notation Reference: [Instrument names], page 140, Section 5.1.5 [Defining new contexts],
page 380.

Snippets: Section “Staff notation” in Snippets.

Internals Reference: Section “Staff” in Internals Reference, Section “StaffGroup” in Inter-
nals Reference, Section “ChoirStaff” in Internals Reference, Section “GrandStaff” in Internals
Reference, Section “PianoStaft” in Internals Reference, Section “SystemStartBar” in Internals
Reference, Section “SystemStartBrace” in Internals Reference, Section “SystemStartBracket”
in Internals Reference, Section “SystemStartSquare” in Internals Reference.

Chapter 1: Musical notation 127

Nested staff groups

Staff-group contexts can be nested to arbitrary depths. In this case, each child context creates
a new bracket adjacent to the bracket of its parent group.

\new StaffGroup <<
\new Staff { c2 c | c2 ¢ }
\new StaffGroup <<
\new Staff { g2 g | g2 g }
\new StaffGroup \with {
systemStartDelimiter = #'SystemStartSquare
}
<<
\new Staff { e2 e | e2 e }
\new Staff { c2 c | c2 c }

>>
>>

>>
)" 4
4\ o 77 7 7 7
[v Y W | |
S

A0 0) L
)" 4 | |
£\ f £) | |
[[av YA W] = = -~ ~
SV c—6C
)" 4)
4\ r @) | | | |
[[av Y O | | | |
SP p= | = -
U L 4 L 4 L4 L4
)" 4
/\ r @)
[[av Y W
SV

\\ e/ & 8 & &

New nested staff group contexts can be defined. For details, see Section 5.1.5 [Defining new
contexts|, page 380.

Selected Snippets

Nesting staves

The property systemStartDelimiterHierarchy can be used to make more complex nested
staff groups. The command \set StaffGroup.systemStartDelimiterHierarchy takes an al-
phabetical list of the number of staves produced. Before each staff a system start delimiter can
be given. It has to be enclosed in brackets and takes as much staves as the brackets enclose.
Elements in the list can be omitted, but the first bracket takes always the complete number of
staves. The possibilities are SystemStartBar, SystemStartBracket, SystemStartBrace, and
SystemStartSquare.

\new StaffGroup
\relative c'' <<
\set StaffGroup.systemStartDelimiterHierarchy
= #'(SystemStartSquare (SystemStartBrace (SystemStartBracket a
(SystemStartSquare b)) c) d)
\new Staff { c1 }
\new Staff { c1 }
\new Staff { c1 }

Chapter 1: Musical notation 128

\new Staff { c1 }
\new Staff { c1 }
>>

s O

¢ O
Vi

(s O

[@)

o
N (o]

[@)

|
N @4

A S P U U

See also

Notation Reference: [Grouping staves], page 123, [Instrument names], page 140, Section 5.1.5
[Defining new contexts|, page 380.

Snippets: Section “Staff notation” in Snippets.

Internals Reference: Section “StaffGroup” in Internals Reference, Section “ChoirStaff” in
Internals Reference, Section “SystemStartBar” in Internals Reference, Section “SystemStart-
Brace” in Internals Reference, Section “SystemStartBracket” in Internals Reference, Section
“SystemStartSquare” in Internals Reference.

1.6.2 Modifying single staves

This section explains how to change specific attributes of one staff: for example, modifying the
number of staff lines or the staff size. Methods to start and stop staves and set ossia sections
are also described.

Staff symbol

The lines of a staff belong to the StaffSymbol grob. StaffSymbol properties can be modified
to change the appearance of a staff, but they must be modified before the staff is created.

The number of staff lines may be changed. The clef position and the position of middle C
may need to be modified to fit the new staff. For an explanation, refer to the snippet section in
[Clef], page 11.

\new Staff \with {
\override StaffSymbol #'line-count = #3

}
{ddddad}

Chapter 1: Musical notation 129

Staff line thickness can be modified. The thickness of ledger lines and stems are also affected,
since they depend on staff line thickness.
\new Staff \with {
\override StaffSymbol #'thickness = #3
}
{eddchb}

am
N jof

o o

e

Ledger line thickness can be set independently of staff line thickness. In the example the
two numbers are factors multiplying the staff line thickness and the staff line spacing. The two
contributions are added to give the ledger line thickness.

\new Staff \with {
\override StaffSymbol #'ledger-line-thickness = #'(1 . 0.2)
}

{e4ddcbp?}
()
7\ r £}
[fan Y W |
ANV @ |
JJ 4 5

The distance between staff lines can be changed. This setting affects the spacing of ledger
lines as well.
\new Staff \with {

\override StaffSymbol #'staff-space = #1.5

}
{adbcad}l

r£)
A%

A

5

—_ &
a4 °

Further details about the properties of StaffSymbol can be found in Section “staff-symbol-
interface” in Internals Reference.

Modifications to staff properties in the middle of a score can be placed between \stopStaff
and \startStaff:

c2 c

\stopStaff

\override Staff.StaffSymbol #'line-count = #2
\startStaff

b2 b

\stopStaff

\revert Staff.StaffSymbol #'line-count
\startStaff

a2 a

Chapter 1: Musical notation 130

In general, \startStaff and \stopStaff can be used to stop or start a staff in the middle of
a score.

c4d b a2

\stopStaff

b4 c d2

\startStaff

ed d c2

ot r [==

Predefined commands
\startStaff, \stopStaff.

Selected Snippets
Making some staff lines thicker than the others

For pedagogical purposes, a staff line can be thickened (e.g., the middle line, or to emphasize
the line of the G clef). This can be achieved by adding extra lines very close to the line that
should be emphasized, using the line-positions property of the StaffSymbol object.

{
\override Staff.StaffSymbol #'line-positions = #'(-4 -2 -0.2 0 0.2 2 4)
d'4 e' f' g

¥

DO

oy I [

RORSEEEE

See also

Music Glossary: Section “line” in Music Glossary, Section “ledger line” in Music Glossary,
Section “staft” in Music Glossary.

Notation Reference: [Clef], page 11.
Snippets: Section “Staff notation” in Snippets.

Internals Reference: Section “StaffSymbol” in Internals Reference, Section “staff-symbol-
interface” in Internals Reference.

Ossia staves

Ossia staves can be set by creating a new simultaneous staff in the appropriate location:

\new Staff \relative c'' {
c4d bdc
<<
{cdbdc}
\new Staff { e4 d f e }
>>
c4d b c2

Chapter 1: Musical notation 131

0]
N3 A——— | f_T' —1 — T 1
Y, 1 | I — 1
ﬁ*-li o
S? 97 |

However, the above example is not what is usually desired. To create ossia staves that are above
the original staff, have no time signature or clef, and have a smaller font size, tweaks must be
used. The Learning Manual describes a specific technique to achieve this goal, beginning with
Section “Nesting music expressions” in Learning Manual.

The following example uses the alignAboveContext property to align the ossia staff. This
method is most appropriate when only a few ossia staves are needed.

\new Staff = main \relative c'' {
cd bdc
<<

{c4bdc}

\new Staff \with {
\remove "Time_signature_engraver"
alignAboveContext = #"main"
fontSize = #-3
\override StaffSymbol #'staff-space = #(magstep -3)
\override StaffSymbol #'thickness = #(magstep -3)
firstClef = ##f

}
{e4ddfel}
>>
c4d b c2
}
==
0]

bHCroelr|lpaleleoc

ANV | | | | | | | | |

U | | | | | | | | |

If many isolated ossia staves are needed, creating an empty Staff context with a specific
context id may be more appropriate; the ossia staves may then be created by calling this context
and using \startStaff and \stopStaff at the desired locations. The benefits of this method
are more apparent if the piece is longer than the following example.
<<

\new Staff = ossia \with {

\remove "Time_signature_engraver"
\override Clef #'transparent = #i#t
fontSize = #-3
\override StaffSymbol #'staff-space = #(magstep -3)
\override StaffSymbol #'thickness = #(magstep -3)
}
{ \stopStaff s1x6 }

\new Staff \relative c' {

Chapter 1: Musical notation 132

c4d b c2
<<
{ed fe2?
\context Staff = ossia {
\startStaff e4 g8 f e2 \stopStaff

}
>>
g4 a g2 \break
c4 b c2
<<
{gdag2l’

\context Staff = ossia {
\startStaff g4 e8 f g2 \stopStaff

}
>>
ed d c2
}
>>
o) L
)’ 4) | |
£\ r £} | |
[Fan YA | >
-F o &
eJ 4 5 &
Fe==cc==t
& frflese [,
oJ e <
Using the \RemoveEmptyStaffContext command to create ossia staves may be used as an

alternative. This method is most convenient when ossia staves occur immediately following a line
break. In this case, spacer rests do not need to be used at all; only \startStaff and \stopStaff
are necessary. For more information about \RemoveEmptyStaffContext, see [Hiding staves],

page
<<
\n

}
\n

134.

ew Staff = ossia \with {

\remove "Time_signature_engraver"

\override Clef #'transparent = ##t

fontSize = #-3

\override StaffSymbol #'staff-space = #(magstep -3)
\override StaffSymbol #'thickness = #(magstep -3)

ew Staff \relative c' {
c4d b c2

ed f e2

g4 a g2 \break

<<

Chapter 1: Musical notation

{c4bc2}
\context Staff = ossia {
c4 e8 d c2 \stopStaff

}

>>

gd a g2

e4d d c2

}

>>

\layout {
\context {
\RemoveEmptyStaffContext

\override VerticalAxisGroup #'remove-first = ##t

}
}

N (o

[Y
QL
[

Gz e
-

@ r -
4
e
%—H_{—I

§i<:>
T

|
(\TEEE

ANV
U I I

Selected Snippets

Vertically aligning ossias and lyrics

133

This snippet demonstrates the use of the context properties alignBelowContext and

alignAboveContext to control the positioning of lyrics and ossias.

\paper {
ragged-right = ##t
b

\relative c' <<
\new Staff = "1" { c4 c s2 }
\new Staff = "2" { c4 c s2 }
\new Staff = "3" { c4 c s2 }
{ \skip 2
<<
\lyrics {
\set alignBelowContext = #"1"
lyrics4 below
}
\new Staff \with {
alignAboveContext = #"3"
fontSize = #-2

\override StaffSymbol #'staff-space = #(magstep -2)

Chapter 1: Musical notation 134

\remove "Time_signature_engraver"
A
\times 4/6 {
\override TextScript #'padding = #3
c8[""ossia above" d e d e f]

lyrics below

e U

ossia above

Scesced

R~

p—
N (¢4

G

o @

See also

Music Glossary: Section “ossia” in Music Glossary, Section “staff” in Music Glossary, Section
“Frenched staftf” in Music Glossary.

Learning Manual: Section “Nesting music expressions” in Learning Manual, Section “Size of
objects” in Learning Manual, Section “Length and thickness of objects” in Learning Manual.

Notation Reference: [Hiding staves|, page 134.

Snippets: Section “Staff notation” in Snippets.

Internals Reference: Section “StaffSymbol” in Internals Reference.

Hiding staves

Staff lines can be hidden by removing the Staff_symbol_engraver from the Staff context. As
an alternative, \stopStaff may be used.
\new Staff \with {
\remove "Staff_symbol_engraver"
}
\relative c''' { a8 f el6 d c b a2 }

C LF "r:fJ

Empty staves can be hidden by setting the \RemoveEmptyStaffContext command in the
\layout block. In orchestral scores, this style is known as ‘Frenched Score’. By default, this
command hides and removes all empty staves in a score except for those in the first system.

Chapter 1: Musical notation 135

Note: A staff is considered empty when it contains only multi-measure rests, skips, spacer rests,
or a combination of these elements.

\layout {
\context {
\RemoveEmptyStaffContext
}
}

\relative c' <<
\new Staff {
e4 f g a \break
bl \break
a4 b c2
}
\new Staff {
c,4 d e £ \break
R1 \break
f4 g c,2
}
>>

\RemoveEmptyStaffContext can also be used to create ossia sections for a staff. For details,
see [Ossia staves|, page 130.

The \AncientRemoveEmptyStaffContext command may be used to hide empty staves in
ancient music contexts. Similarly, \RemoveEmptyRhythmicStaffContext may be used to hide
empty RhythmicStaff contexts.

Predefined commands

\RemoveEmptyStaffContext, \AncientRemoveEmptyStaffContext,
\RemoveEmptyRhythmicStaffContext.

Chapter 1: Musical notation 136

Selected Snippets
Removing the first empty line

The first empty staff can also be removed from the score by setting the VerticalAxisGroup
property remove-first. This can be done globally inside the \layout block, or locally inside
the specific staff that should be removed. In the latter case, you have to specify the context
(Staff applies only to the current staff) in front of the property.

The lower staff of the second staff group is not removed, because the setting applies only to
the specific staff inside of which it is written.

\layout {
\context {
\RemoveEmptyStaffContext
% To use the setting globally, uncomment the following line:
% \override VerticalAxisGroup #'remove-first = ##t
}
}
\new StaffGroup <<
\new Staff \relative c' {
ed f g a \break
cl
}
\new Staff {
% To use the setting globally, comment this line,
% uncomment the line in the \layout block above
\override Staff.VerticalAxisGroup #'remove-first = #i#t
R1 \break
R
}
>>
\new StaffGroup <<
\new Staff \relative c' {
ed f g a \break
cl
}
\new Staff {
R1 \break
R
}

>>

DO

>

«
ol
(B

T

O

G e

Chapter 1: Musical notation 137

() . |
. —) I I
'(\\ \ W ‘ &»
)" A

A\ r £) L

[[an YA O]

ANV

[y

2
0
£\ O
[Fan)
SV
[Y)
See also

Music Glossary: Section “Frenched staff” in Music Glossary.
Notation Reference: [Staff symbol], page 128, [Ossia staves], page 130.
Snippets: Section “Staff notation” in Snippets.

Internals Reference: Section “ChordNames” in Internals Reference, Section “FiguredBass”
in Internals Reference, Section “Lyrics” in Internals Reference, Section “Staff” in Internals
Reference, Section “Vertical AxisGroup” in Internals Reference, Section “Staff_symbol_engraver”
in Internals Reference.

Known issues and warnings
Removing Staff_symbol_engraver also hides bar lines. If bar line visibility is forced, formatting
errors may occur. In this case, use the following overrides instead of removing the engraver:

\override StaffSymbol #'stencil = ##f
\override NoteHead #'no-ledgers = #i#t

1.6.3 Writing parts

This section explains how to insert tempo indications and instrument names into a score. Meth-
ods to quote other voices and format cue notes are also described.

Metronome marks

A basic metronome mark is simple to write:
\tempo 4 = 120

c2 d
ed. d8 c2
o) J: 120
)" 4
/\ r £)
[[an Y W] | |

DV s e)
Tempo indications with text can be used instead:

\tempo "Allegretto"
cd edc
b4. al6 b c4 rd

N Allegretto

] N
A3V | I' - i e '{
e) | |

Combining a metronome mark and text will automatically place the metronome mark within
parentheses:

Chapter 1: Musical notation

\tempo "Allegro" 4 = 160
gd cde
d4 b g2

A Allegro (J = 160)
— I_T‘ o
=

e) |

In general, the text can be any markup object:

\tempo \markup { \italic Faster } 4 = 132
a8-. r8 b-. r gis-. r a-. r

Faster (J = 132)
A A

A . A

e

f

g r T

138

A parenthesized metronome mark with no textual indication may be written by including an

empty string in the input:
\tempo "" 8 = 96
dd g e c

(oh = 96)

0

[oY W2
ANV I
U 1

Selected Snippets

Printing metronome and rehearsal marks below the staff

By default, metronome and rehearsal marks are printed above the staff. To place them below
the staff simply set the direction property of MetronomeMark or RehearsalMark appropriately.

\layout { ragged-right = ##f }

{
% Metronome marks below the staff
\override Score.MetronomeMark #'direction
\tempo 8. = 120
c''1l

% Rehearsal marks below the staff
\override Score.RehearsalMark #'direction
\mark \default

c''1

#DOWN

#DOWN

o
N (@
N
v

O

G

..:
1l

=
DO
[e)

Chapter 1: Musical notation 139

Changing the tempo without a metronome mark

To change the tempo in MIDI output without printing anything, make the metronome mark
invisible.
\score {
\new Staff \relative c' {
\tempo 4 = 160
cdeghb
c4 bdc
\set Score.tempoHideNote = #i#t
\tempo 4 = 96
d,4 fis a cis
d4d cis e d
}
\layout { }
\midi { }
}

n o d=160
e erifr T e e e

e) & | | [4

Creating metronome marks in markup mode

New metronome marks can be created in markup mode, but they will not change the tempo
in MIDI output.

\relative c' {
\tempo \markup {
\concat {
(
\smaller \general-align #Y #DOWN \note #"16." #1

no—_n

\smaller \general-align #Y #DOWN \note #"8" #1

N (ah-::ch)

)" 4

~—— ”
ANV |
[Y) o 4 ' &

—~

7

For more details, see Section 1.8.2 [Formatting text], page 167.

See also

Music Glossary: Section “metronome” in Music Glossary, Section “metronomic indication”
in Music Glossary, Section “tempo indication” in Music Glossary, Section “metronome mark”
in Music Glossary .

Chapter 1: Musical notation 140

Notation Reference: Section 1.8.2 [Formatting text], page 167, Section 3.5 [MIDI output],
page 323.

Snippets: Section “Staff notation” in Snippets

Internals Reference: Section “MetronomeMark” in Internals Reference.

Instrument names

Instrument names can be printed on the left side of staves in the Staff and PianoStaff contexts.
The value of instrumentName is used for the first staff, and the value of shortInstrumentName
is used for all succeeding staves.

\set Staff.instrumentName = #"Violin "
\set Staff.shortInstrumentName = #"Vln "
c4d.. g'l6 c4.. g'l16

\break

cl
0) .
)" A N

Violin ("9 e 'N; —
() "

2 ©
Vin

Markup mode can be used to create more complicated instrument names

\set Staff.instrumentName = \markup {
\column { "Clarinetti"
\line { "in B" \smaller \flat } } }
c4 c,16 d e £ g2

Clarinettif)#:

in B}, 8} o

When two or more staff contexts are grouped together, the instrument names and short
instrument names are centered by default. To center multi-line instrument names, \center-
column must be used:

<<
\new Staff {

\set Staff.instrumentName
£2 g4 f

#"Flute"

}
\new Staff {
\set Staff.instrumentName
Clarinet
\line { "in B" \smaller \flat }
}
c4d b c2

\markup \center-column {

}
>>

Chapter 1: Musical notation 141

Flute

p—
N (¢4

> O

Clarinet W:

in B},

However, if the instrument names are longer, the instrument names in a staff group may not
be centered unless the indent and short-indent settings are increased. For details about these
settings, see [Horizontal dimensions], page 336.

\layout {
indent = 3.0\cm
short-indent = 1.5\cm

\relative c'' <<

\new Staff {
\set Staff.instrumentName = #"Alto Flute in G"
\set Staff.shortInstrumentName = #"F1."
f2 g4 f \break
gd £ g2

}

\new Staff {
\set Staff.instrumentName = #"Clarinet"
\set Staff.shortInstrumentName = #"Clar."
c,4 b c2 \break

c2 bd c
}
>>
O |~ 4
Alto Flute in G H—€ |
SV
eJ
0)
Clarinet fes—C
SV |
QJ |
2 0 o
)" 4
Fl. Hes I
(e |
eJ
0
Clar. i
SV | |
U | |

To add instrument names to other contexts (such as GrandStaff, ChoirStaff, or
StaffGroup), Instrument_name_engraver must be added to that context. For details, see
Section 5.1.3 [Modifying context plug-ins|, page 378.

Instrument names may be changed in the middle of a piece:

\set Staff.instrumentName = #"First"
\set Staff.shortInstrumentName = #"one"
cl ¢ ¢ ¢ \break

cl ¢ ¢ ¢ \break

\set Staff.instrumentName = #"Second"

Chapter 1: Musical notation 142

\set Staff.shortInstrumentName = #"two"
cl ¢ ¢ ¢ \break
cl ¢ ¢ ¢ \break

First

P

one s
ANIV4
J ©o o o ©

5
f

9

0
Second s
SV
[Y)

—
w0

ﬁ
>
o
G

o 4 9©© 49 ©o 49 oo

If an instrument switch is needed, \addInstrumentDefinition may be used in combination
with \instrumentSwitch to create a detailed list of the necessary changes for the switch. The
\addInstrumentDefinition command has two arguments: an identifying string, and an associ-
ation list of context properties and values to be used for the instrument. It must be placed in the
toplevel scope. \instrumentSwitch is used in the music expression to declare the instrument
switch:

\addInstrumentDefinition #"contrabassoon"
#° ((instrumentTransposition . ,(ly:make-pitch -1 0 0))

(shortInstrumentName . "Cbsn.")
(clefGlyph . "clefs.F")
(middleCPosition . 6)
(clefPosition . 2)
(instrumentCueName . , (make-bold-markup "cbsn."))
(midiInstrument . "bassoon"))

\new Staff \with {
instrumentName = #"Bassoon"
}
\relative c' {
\clef tenor
\compressFullBarRests
c2 g'
R1*16
\instrumentSwitch "contrabassoon"
c,,2 g \break
c,1 7 | c1

Chapter 1: Musical notation 143

cbsn.
Bor o
Bassoon {3[' ! . .

QL

19
&)
Cbsn. =~
= =
v
See also

Notation Reference: [Horizontal dimensions|, page 336, Section 5.1.3 [Modifying context
plug-ins], page 378.

Snippets: Section “Staff notation” in Snippets.

Internals Reference: Section “InstrumentName” in Internals Reference, Section “PianoStaff”
in Internals Reference, Section “Staff” in Internals Reference.

Quoting other voices

It is very common for one voice to double some of the music from another voice. For example,
the first and second violins may play the same notes during a passage of music. In LilyPond
this is accomplished by letting one voice quote the other voice without having to re-enter it.

Before a part can be quoted, the \addQuote command must be used to initialize the quoted
fragment. This command must be used in the toplevel scope. The first argument is an identifying
string, and the second is a music expression:

flute = \relative c'' {
a4 gis g gis
}
\addQuote "flute" { \flute }

The \quoteDuring command is used to indicate the point where the quotation begins. It
is followed by two arguments: the name of the quoted voice, as defined with \addQuote, and a
music expression that indicates the duration of the quote, usually spacer rests or multi-measure
rests. The corresponding music from the quoted voice is inserted into the music expression:
flute = \relative c'' {

ad gis g gis
}
\addQuote "flute" { \flute }

\relative c' {
c4 cis \quoteDuring #"flute" { s2 }

3

N (@

Gz e
-

o-#o-

If the music expression used for \quoteDuring contains anything but a spacer rest or multi-
measure rest, a polyphonic situation is created, which is often not desirable:
flute = \relative c'' {
a4 gis g gis
}
\addQuote "flute" { \flute }

Chapter 1: Musical notation 144

\relative c' {
c4 cis \quoteDuring #"flute" { c4 b }
}

Quotations recognize instrument transposition settings for both the source and target in-
struments if the \transposition command is used. For details about \transposition, see
[Instrument transpositions|, page 17.

clarinet = \relative c'' {
\transposition bes
a4 gis g gis

}

\addQuote "clarinet" { \clarinet }

\relative c' {
c4 cis \quoteDuring #"clarinet" { s2 }

3

N (@

-0-1;0-

P
—

It is possible to tag quotations with unique names in order to process them in different ways.
For details about this procedure, see [Using tags|, page 318.

Selected Snippets

Quoting another voice with transposition

Quotations take into account the transposition of both source and target. In this example,
all instruments play sounding middle C; the target is an instrument in F. The target part may
be transposed using \transpose. In this case, all the pitches (including the quoted ones) are
transposed.

\addQuote clarinet {
\transposition bes
\repeat unfold 8 { d'16 d4' 4'8 }
}

\addQuote sax {
\transposition es'
\repeat unfold 16 { a8 }

}

quoteTest = {
% french horn
\transposition f
g'4
<< \quoteDuring #"clarinet" { \skip 4 } s4""clar." >>
<< \quoteDuring #"sax" { \skip 4 } s4""sax." >>

g'4

Chapter 1: Musical notation 145

}
{
\set Staff.instrumentName =
\markup {
\center-column { Horn \line { in F } }
}
\quoteTest
\transpose c' d' << \quoteTest s4_"up a tone" >>
}
f clar. sax. | clar, sax. |
Horn X r) | | | | I il l
inF p——o
o up a tone

Quoting another voice

The quotedEventTypes property determines the music event types that are quoted. The
default value is (note-event rest-event), which means that only notes and rests of the quoted
voice appear in the \quoteDuring expression. In the following example, a 16th rest is not quoted
since rest-event is not in quotedEventTypes

quoteMe = \relative c' {
fis4 r16 a8.-> b4A\ff c

}

\addQuote quoteMe \quoteMe

original = \relative c'' {
c8 d s2
\once \override NoteColumn #'ignore-collision = ##t
es8 gis8

}

<<
\new Staff {
\set Staff.instrumentName = #"quoteMe"
\quoteMe
}
\new Staff {
\set Staff.instrumentName = #"orig"
\original
}
\new Staff \relative c'' <<
\set Staff.instrumentName = #"orig+quote"
\set Staff.quotedEventTypes =
#' (note-event articulation-event)
\original
\new Voice {
s4
\set fontSize = #-4
\override Stem #'length-fraction = #(magstep -4)
\quoteDuring #"quoteMe" { \skip 2. }

Chapter 1: Musical notation 146

>>
>>
() \
)" 4 1\
quoteMe i€ o i—‘—lp I.
| |
Jf
0 be 4
orig i C—E—P
:}U | I |
n I\ !)r#'_
orig+quotehg_f T
;\J_U | I | = |
See also

Notation Reference: [Instrument transpositions], page 17, [Using tags], page 318.
Snippets: Section “Staff notation” in Snippets.

Internals Reference: Section “QuoteMusic” in Internals Reference, Section “Voice” in Inter-
nals Reference.

Known issues and warnings

Only the contents of the first Voice occurring in an \addQuote command will be considered for
quotation, so music cannot contain \new and \context Voice statements that would switch to
a different Voice.

Quoting grace notes is broken and can even cause LilyPond to crash.
Quoting nested triplets may result in poor notation.

In earlier versions of LilyPond (pre 2.11), addQuote was written entirely in lower-case letters:
\addquote.

Formatting cue notes

The previous section explains how to create quotations. The \cueDuring command is a more
specialized form of \quoteDuring, being particularly useful for inserting cue notes into a part.
The syntax is as follows:

\cueDuring #partname #voice music

This command copies the corresponding measures from partname into a CueVoice context.
The CueVoice is created implicitly, and occurs simultaneously with music, which creates a
polyphonic situation. The voice argument determines whether the cue notes should be notated
as a first or second voice; UP corresponds to the first voice, and DOWN corresponds to the second.

oboe = \relative c'' {
r2 r8 di6 f e g f a
g8 glb6 g g2.
}
\addQuote "oboe" { \oboe }

\new Voice \relative c'' {
\cueDuring #"oboe" #UP { R1 }
g2 c,

}

Chapter 1: Musical notation 147

0o -, AL

{2
\ W]

)’ 4
D
U - <

-~

In the above example, the Voice context had to be explicitly declared, or else the entire music
expression would belong to the CueVoice context.

The name of the cued instrument can be printed by setting the instrumentCueName property
in the CueVoice context.

oboe = \relative c''' {
g4 r8 el6 f ed d
}
\addQuote "oboe" { \oboe }

\new Staff \relative c'' <<

\new CueVoice \with {
instrumentCueName = "ob."

}

\new Voice {
\cueDuring #"oboe" #UP { R1 }
g4. b8 d2

}

>>

o) Jl . A .

"4 o * e | | P
G C e
ANV 1/ |
Y, - r—

In addition to printing the name of the cued instrument, when cue notes end, the name
of the original instrument should be printed, and any other changes introduced by the cued
part should be undone. This can be accomplished by using \addInstrumentDefinition and
\instrumentSwitch. For an example and explanation, see [Instrument names], page 140.

The \killCues command removes cue notes from a music expression. This can be useful if
cue notes need to be removed from a part but may be restored at a later time.
flute = \relative c''' {

r2 cis2 r2 dis2

}
\addQuote "flute" { \flute }

\new Voice \relative c'' {
\killCues {
\cueDuring #"flute" #UP { R1 }

gd. b8 d2
}
+
() .
)4 - - | =Y
) r—

The \transposedCueDuring command is useful for adding instrumental cues from a com-
pletely different register. The syntax is similar to \cueDuring, but it requires one extra argument
to specify the transposition of the cued instrument. For more information about transposition,
see [Instrument transpositions|, page 17.

Chapter 1: Musical notation 148

piccolo = \relative c''' {
\clef "treble"8"
R1
c8 c ce g2
ad g g2
}
\addQuote "piccolo" { \piccolo }

cbassoon = \relative c, {
\clef "bass_8"
cdrgr
\transposedCueDuring #"piccolo" #UP c,, { R1 }
cdrgr

<<
\new Staff = "piccolo" \piccolo

\new Staff = "cbassoon" \cbassoon
>>

A -

)7 4 o

(€ - i i

AN2V4 | I

[Y)

6) N RN | RN N

il O L) rd | € i r d r d
/ [| [y [

3 o -

It is possible to tag cued parts with unique names in order to process them in different ways.
For details about this procedure, see [Using tags|, page 318.

See also

Notation Reference: [Instrument transpositions], page 17, [Instrument names|, page 140,
[Using tags|, page 318.
Snippets: Section “Staff notation” in Snippets.

Internals Reference: Section “CueVoice” in Internals Reference, Section “Voice” in Internals
Reference.

Known issues and warnings

Collisions can occur with rests, when using \cueDuring, between Voice and CueVoice contexts.

1.7 Editorial annotations

PR 32
H 1. > £ o 5 e 2 dr 3 1 2
ANV = 3 7 7 V_‘_idl—é - HHJL—J I £
y, i .:h.\ S Tar:
- ‘M).*%’,__ i Al—> |
ﬁsitt:Z:zﬂ_i_Jﬁ_;__ — irzqcﬁjbt:Eifﬁtﬂ'"IkﬁF—
1 21 1

d
LN
M

Chapter 1: Musical notation 149

This section discusses the various ways to change the appearance of notes and add analysis
or educational emphasis.

1.7.1 Inside the staff

This section discusses how to add emphasis to elements that are inside the staff.

Selecting notation font size

The font size of notation elements may be altered. It does not change the size of variable
symbols, such as beams or slurs.

[Note: For font sizes of text, see [Selecting font and font size], page 168. }

\huge

c4.-> d8---3

\large

c4.-> d8---3

\normalsize

c4.-> d8---3

\small

c4.-> d8---3

\tiny

c4.-> d8---3

\teeny

c4.-> d8---3
f 3 3 3 3 3 2

=

— - Y |. 3_ |. 1_r.) f. I —"
U | ! | | | |

Internally, this sets the fontSize property. This in turn causes the font-size property to
be set in all layout objects. The value of font-size is a number indicating the size relative to
the standard size for the current staff height. Each step up is an increase of approximately 12%
of the font size. Six steps is exactly a factor of two. The Scheme function magstep converts a
font-size number to a scaling factor. The font-size property can also be set directly, so that
only certain layout objects are affected.

\set fontSize = #3

c4.-> d8---3
\override NoteHead #'font-size = #-4
c4.-> d8---3
\override Script #'font-size = #2
c4d.-> d8---3
\override Stem #'font-size = #-5
c4.-> d8---3
0] >§>§>i>i
wjl.' .Il .l'l.‘
JJ ! '

Font size changes are achieved by scaling the design size that is closest to the desired size.
The standard font size (for font-size = #0) depends on the standard staff height. For a 20pt
staff, a 10pt font is selected.

Chapter 1: Musical notation 150

The font-size property can only be set on layout objects that use fonts. These are the ones
supporting the font-interface layout interface.
Predefined commands

\teeny, \tiny, \small, \normalsize, \large, \huge.

See also
Snippets: Section “Editorial annotations” in Snippets.

Internals Reference: Section “font-interface” in Internals Reference.

Fingering instructions
Fingering instructions can be entered using note-digit:

c4-1 d-2 £-4 e-3

o) 1 2 4 3

VA

ANIVJ
e) |

Markup texts may be used for finger changes.

c4-1 d-2 f-4 c"\markup { \finger "2 - 3" }

o) 1 2 4 2.3
o

ANV | | |

U I ! I

A thumb-script can be added (e.g., in cello music) to indicate that a note should be played
with the thumb.

<a_\thumb a'-3>2 <b_\thumb b'-3>

3 3
0 Q
n o5 {2
)’ 4
7\ r £)
s U w
A\2V4
o

Fingerings for chords can also be added to individual notes of the chord by adding them after
the pitches.

<c-1 e-2 g-3 b-5>2 <d-1 f-2 a-3 c-5>

5 5
3 3

H &

)" 4 rJ

£\ r £) &

[[an Y W]

ANV

[Y) 2 2
1 1

Fingering instructions may be manually placed above or below the staff, see Section 5.4.2
[Direction and placement], page 394.

Chapter 1: Musical notation 151

Selected Snippets
Controlling the placement of chord fingerings
The placement of fingering numbers can be controlled precisely.

\relative c' {

\set fingeringOrientations = #'(left)
<c-1 e-3 a-5>4
\set fingeringOrientations = #'(down)

<c-1 e-3 a-5>4
\set fingeringOrientations
<c-1 e-3 a-5>4

#'(down right up)

\set fingeringQOrientations = #' (up)
<c-1 e-3 a-5>4
\set fingeringOrientations = #'(left)
<c-1>2
\set fingeringOrientations = #'(down)
<e-3>2
}
5
3
0] L 5 1
)’ 4 T T 1
%w.;

Allowing fingerings to be printed inside the staff

By default, vertically oriented fingerings are positioned outside the staff. However, this
behavior can be canceled.
\relative c' {

<c-1 e-2 g-3 b-5>2

\once \override Fingering #'staff-padding = #'()

<c-1 e-2 g-3 b-5>2

}
5
0 3 5
)74 3
y A £)
[Y W7
2 2
1 1

Awvoiding collisions with chord fingerings

Fingerings and string numbers applied to individual notes will automatically avoid beams and
stems, but this is not true by default for fingerings and string numbers applied to the individual
notes of chords. The following example shows how this default behavior can be overridden.

\relative c¢' {
\set fingeringOrientations = #'(up)
\set stringNumberOrientations = #'(up)
\set strokeFingerOrientations = #' (up)

Chapter 1: Musical notation 152

% Default behavior

r8
<f c'-5>8
<f c'\5>8

<f c¢'-\rightHandFinger #2 >8

% Corrected to avoid collisions

r8

\override Fingering #'add-stem-support = ##t

<f c'-5>8

\override StringNumber #'add-stem-support = ##t
<f c'\5>8

\override StrokeFinger #'add-stem-support = ##t

<f c'-\rightHandFinger #2 >8

}
5 ®
0 e oy I o |
[Y)
See also

Notation Reference: Section 5.4.2 [Direction and placement], page 394
Snippets: Section “Editorial annotations” in Snippets.

Internals Reference: Section “FingeringEvent” in Internals Reference, Section “fingering-
event” in Internals Reference, Section “Fingering_engraver” in Internals Reference, Section
“New_fingering_engraver” in Internals Reference, Section “Fingering” in Internals Reference.

Hidden notes

Hidden (or invisible or transparent) notes can be useful in preparing theory or composition
exercises.

c4 d

\hideNotes

e4 f

\unHideNotes

g a

\hideNotes

b

\unHideNotes

Notation objects which are attached to invisible notes are still visible.

c4(d)
\hideNotes

Chapter 1: Musical notation 153

e4(\p f)--
0) =
ANV . | |
JJ ' p

Predefined commands
\hideNotes, \unHideNotes.

See also
Snippets: Section “Editorial annotations” in Snippets.

Internals Reference: Section “Note_spacing_engraver” in Internals Reference, Section
“NoteSpacing” in Internals Reference.

Coloring objects

Individual objects may be assigned colors. Valid color names are listed in the Section B.5 [List
of colors], page 445.

\override NoteHead #'color #red
c4d c

\override NoteHead #'color
d

\override Stem #'color = #blue

#(x11l-color 'LimeGreen)

The full range of colors defined for X11 can be accessed by using the Scheme function x11-
color. The function takes one argument; this can be a symbol in the form ’FooBar or a string
in the form "FooBar". The first form is quicker to write and is more efficient. However, using
the second form it is possible to access X11 colors by the multi-word form of its name.

If x11-color cannot make sense of the parameter then the color returned defaults to black.

\override Staff.StaffSymbol #'color = #(x1l-color 'SlateBlue2)
\set Staff.instrumentName = \markup {
\with-color #(x1l-color 'navy) "Clarinet"

}

gis8 a

\override Beam #'color = #(xll-color "medium turquoise")

gis a

\override Accidental #'color = #(x1l-color 'DarkRed)

gis a

\override NoteHead #'color = #(x1ll-color "LimeGreen")

gis a

% this is deliberate nonsense; note that the stems remain black
\override Stem #'color = #(xll-color 'Boggle)

b2 cis

Chapter 1: Musical notation 154

. Q N — — N — — #-
Clarinet Wﬁﬁﬁj E—
U v | |

Exact RGB colors can be specified using the Scheme function rgb-color.
\override Staff.StaffSymbol #'color = #(xll-color 'SlateBlue2)
\set Staff.instrumentName = \markup {

\with-color #(x1l-color 'navy) "Clarinet"

}

\override Stem #'color
gis8 a
\override Stem #'color
gis8 a
\override Stem #'color
gisd a

#(rgb-color 0 0 0)

#(rgb-color 1 1 1)

#(rgb-color 0 0 0.5)

0} .

)’ 4 | - |
Clarinet (gy Cog @ g @ o @

oJ b

See also

Notation Reference: Section B.5 [List of colors|, page 445, Section 5.3.4 [The tweak com-
mand], page 390.

Snippets: Section “Editorial annotations” in Snippets.

Known issues and warnings

An X11 color is not necessarily exactly the same shade as a similarly named normal color.

Not all X11 colors are distinguishable in a web browser, i.e., a web browser might not display a
difference between 'LimeGreen and 'ForestGreen. For web use normal colors are recommended
(i.e., #blue, #green, #red).

Notes in a chord cannot be colored with \override; use \tweak instead, see Section 5.3.4
[The tweak command], page 390.

Parentheses

Objects may be parenthesized by prefixing \parenthesize to the music event. When prefixed to
a chord, it parenthesizes every note. Individual notes inside a chord may also be parenthesized.
c2 \parenthesize d

c2 \parenthesize <c e g>

c2 <c \parenthesize e g>

f) (£2))
)" 4 =T (PJ) [{~))]
4\ o (7 N el 7 (F7) 7)
[(oY 2| | |
g

Non-note objects may be parenthesized as well. For articulations, a hyphen is needed before
the \parenthesize command.

c2-\parenthesize -. d
c2 \parenthesize r
o)
)’ 4 - (e) ~
(o WL /20 i ——
| | |

ANV
U | ! |

Chapter 1: Musical notation 155

See also
Snippets: Section “Editorial annotations” in Snippets.

Internals Reference: Section “Parenthesis_engraver” in Internals Reference, Section “Paren-
thesesltem” in Internals Reference, Section “parentheses-interface” in Internals Reference.

Known issues and warnings

Parenthesizing a chord prints parentheses around each individual note, instead of a single large
parenthesis around the entire chord.

Stems

Whenever a note is found, a Stem object is created automatically. For whole notes and rests,
they are also created but made invisible.

Predefined commands

\stemUp, \stemDown, \stemNeutral.

Selected Snippets

Default direction of stems on the center line of the staff

The default direction of stems on the center line of the staff is set by the Stem property
neutral-direction.

\relative c'' {
ad bchb
\override Stem #'neutral-direction
ad bcb
\override Stem #'neutral-direction
ad bchb

#up

#down

o | | | | |

e) | | | | | |

See also
Notation Reference: Section 5.4.2 [Direction and placement], page 394.
Snippets: Section “Editorial annotations” in Snippets.

Internals Reference: Section “Stem_engraver” in Internals Reference, Section “Stem” in In-
)
ternals Reference, Section “stem-interface” in Internals Reference.

1.7.2 Outside the staff

This section discusses how to add emphasis to elements in the staff from outside of the staff.

Balloon help
Elements of notation can be marked and named with the help of a square balloon. The primary
purpose of this feature is to explain notation.

\new Voice \with { \consists "Balloon_engraver" }

{
\balloonGrobText #'Stem #'(3 . 4) \markup { "I'm a Stem" }

Chapter 1: Musical notation 156

a8

\balloonGrobText #'Rest #'(-4 . -4) \markup { "I'm a rest" }

r

<c, g'-\balloonText #'(-2 . -2) \markup { "I'm a note head" } c>2.

I'm a Stem

]

|
N

QRN |

, I'm a note head
I'm a rest

There are two music functions, balloonGrobText and balloonText; the former is used like
\once \override to attach text to any grob, and the latter is used like \tweak, typically within
chords, to attach text to an individual note.

Balloon text normally influences note spacing, but this can be altered:

\new Voice \with { \consists "Balloon_engraver" }
{
\balloonLengthOff
\balloonGrobText #'Stem #'(3 . 4) \markup { "I'm a Stem" }
a8
\balloonGrobText #'Rest #'(-4 . -4) \markup { "I'm a rest" }
r
\balloonLengthOn
<c, g'-\balloonText #'(-2 . -2) \markup { "I'm a note head" } c>2.

I'm a Stem
)
€27 2:
J=
oJ =g
, I'm a note head
I'm a rest

Predefined commands
\balloonLengthOn, \balloonLengthOff.

See also
Snippets: Section “Editorial annotations” in Snippets.

Internals Reference: Section “Balloon_engraver” in Internals Reference, Section “Balloon-
TextItem” in Internals Reference, Section “balloon-interface” in Internals Reference.

Grid lines

Vertical lines can be drawn between staves synchronized with the notes.

The Grid_point_engraver must be used to create the end points of the lines, while the
Grid_line_span_engraver must be used to actually draw the lines. By default this centers
grid lines horizontally below and to the left side of each note head. Grid lines extend from the
middle lines of each staff. The gridInterval must specify the duration between the grid lines.

Chapter 1: Musical notation

\layout {
\context {
\Staff
\consists "Grid_point_engraver"
gridInterval = #(ly:make-moment 1 4)
}
\context {
\Score
\consists "Grid_line_span_engraver"
b
+

\score {
\new ChoirStaff <<

\new Staff \relative c'' {
\stemUp
c4. d8 e8 f g4

}

\new Staff \relative c {
\clef bass
\stemDown
cd g' fe

G

[)

N

ofe
—
Nle]

Selected Snippets

Grid lines: changing their appearance

The appearance of grid lines can be changed by overriding some of their properties.

\score {
\new ChoirStaff <<
\new Staff {
\relative c'' {
\stemUp
c'4. d8 e8 f g4
}
}
\new Staff {
\relative c {

% this moves them up one staff space from the default position
\override Score.GridLine #'extra-offset

\stemDown
\clef bass

157

Chapter 1: Musical notation 158

\once \override Score.GridLine #'thickness = #5.0
cd
\once \override Score.GridLine #'thickness = #1.0
g'é4
\once \override Score.GridLine #'thickness = #3.0
f4
\once \override Score.GridLine #'thickness = #5.0
ed
}
}
>>
\layout {
\context {
\Staff
% set up grids
\consists "Grid_point_engraver"
% set the grid interval to one quarter note
gridInterval = #(ly:make-moment 1 4)
}
\context {
\Score
\consists "Grid_line_span_engraver"
% this moves them to the right half a staff space
\override NoteColumn #'X-offset = #-0.5

S D

[J—

)’ 4

r)
[av YA W
A2V

ey

7

See also
Snippets: Section “Editorial annotations” in Snippets.

Internals Reference: Section “Grid_line_span_engraver” in Internals Reference, Section
“Grid_point_engraver” in Internals Reference, Section “GridLine” in Internals Reference,
Section “GridPoint” in Internals Reference, Section “grid-line-interface” in Internals Reference,
Section “grid-point-interface” in Internals Reference.

Analysis brackets

Brackets are used in musical analysis to indicate structure in musical pieces. Simple horizontal
brackets are supported.

\layout {
\context {

Chapter 1: Musical notation

\Voice
\consists "Horizontal_bracket_engraver"
}
}
\relative c'' {
c2\startGroup
d\stopGroup
}

\ U7 |

0
D !
v —

Analysis brackets may be nested.

\layout {
\context {
\Voice
\consists "Horizontal_bracket_engraver"
}

}

\relative c'' {
c4\startGroup\startGroup
d4\stopGroup
e4\startGroup
d4\stopGroup\stopGroup

0

Z |

ANV I
¢)

See also

Snippets: Section “Editorial annotations” in Snippets.

159

Internals Reference: Section “Horizontal_bracket_engraver” in Internals Reference, Section
“HorizontalBracket” in Internals Reference, Section “horizontal-bracket-interface” in Internals

Reference, Section “Staff” in Internals Reference.

1.8 Text

M

C|(P‘>~:>

Chapter 1: Musical notation 160

cantabile, con intimissimo sentimento, ma sempre molto dolce e semplice

5 - S-S P —

#;Egb. £ 7 | i i i a1

ANV : I L L I'/
non staccato

Dby — T B e e s B s

N "D | | | | | | | | | | | | | | | | | |

T o s 88 8815 ooy woey Fow i EI I EE S
molto P, sempre tranquillo ed egualmente, non rubato . W,

This section explains how to include text (with various formatting) in music scores.

Some text elements that are not dealt with here are discussed in other specific sections:
Section 2.1 [Vocal music], page 183, Section 3.2 [Titles and headers], page 309.

1.8.1 Writing text

This section introduces different ways of adding text to a score.

Note: To write accented and special text (such as characters from other languages), simply
insert the characters directly into the LilyPond file. The file must be saved as UTF-8. For more
information, see Section 3.3.3 [Text encoding], page 321.

Text scripts

Simple “quoted text” indications may be added to a score, as demonstrated in the following
example. Such indications may be manually placed above or below the staff, using the syntax
described in Section 5.4.2 [Direction and placement], page 394.

a8"'"pizz." g f e ad-"scherz." f

f pizz.
€ T——— ——

v scherz.

This syntax is actually a shorthand; more complex text formatting may be added to a note
by explicitly using a \markup block, as described in Section 1.8.2 [Formatting text], page 167.
a8 \markup { \italic pizz. } g f e
a4_\markup { \tiny scherz. \bold molto } f

N pizz.
S € N -

v scherz. molto

By default, text indications do not influence the note spacing. However, their widths can
be taken into account: in the following example, the first text string does not affect spacing,
whereas the second one does.
a8""pizz." g f e
\textLengthOn
a4_"scherzando" £

f pizz. |
)’ 4 |‘r—1__I I il
|

Y scherzando

Chapter 1: Musical notation 161

Predefined commands
\textLengthOn, \textLengthOff.

See also

Notation Reference: Section 1.8.2 [Formatting text|, page 167, Section 5.4.2 [Direction and
placement], page 394.

Snippets: Section “Text” in Snippets.

Internals Reference: Section “TextScript” in Internals Reference.

Known issues and warnings

Checking to make sure that text scripts and lyrics are within the margins is a relatively large
computational task. To speed up processing, LilyPond does not perform such calculations by
default; to enable it, use

\override Score.PaperColumn #'keep-inside-line = ##t

Text spanners

Some performance indications, e.g., rallentando or accelerando, are written as text and are
extended over multiple notes with dotted lines. Such objects, called “spanners”, may be created
from one note to another using the following syntax:

\override TextSpanner #'(bound-details left text) = "rit."
bi\startTextSpan
e, \stopTextSpan

N rit._ _

)’ 4

£\ (o o

[(v YA W=

T o

¢

The string to be printed is set through object properties. By default it is printed in italic
characters, but different formatting can be obtained using \markup blocks, as described in
Section 1.8.2 [Formatting text], page 167.
\override TextSpanner #'(bound-details left text) =

\markup { \upright "rit." }
bi\startTextSpan c
e, \stopTextSpan

rit.. _ _ _ _

(* O
U ©

Pa'
<

G

The line style, as well as the text string, can be defined as an object property. This syntax
is described in Section 5.4.7 [Line styles|, page 405.
Predefined commands

\textSpannerUp, \textSpannerDown, \textSpannerNeutral.

See also
Notation Reference: Section 5.4.7 [Line styles|, page 405, [Dynamics|, page 83.
Snippets: Section “Text” in Snippets.

Internals Reference: Section “TextSpanner” in Internals Reference.

Chapter 1: Musical notation 162

Text marks

Various text elements may be added to a score using the syntax described in [Rehearsal marks],
page 74:

c4
\mark "Allegro"
ccc
Allegro
o)
ANV . |
Y,

This syntax makes it possible to put any text on a bar line; more complex text formatting
may be added using a \markup block, as described in Section 1.8.2 [Formatting text], page 167:
<c e>1
\mark \markup { \italic { colla parte } }
<d £>2 <e g>
<c f aes>1

n colla parte

)" 4 N

r £) 1
[[an Y W] - D
ANV Py 4 <«
[Y) ©- o

This syntax also allows to print special signs, like coda, segno or fermata, by specifying the
appropriate symbol name as explained in [Music notation inside markup], page 176:

<bes f>2 <aes d>

\mark \markup { \musicglyph #"scripts.ufermata" }

<e g>1
n [e\
"4 T N
/\ F £ Y |
[[an YA UL 101 7) >
ANV 5
e

Such objects are only typeset above the top staff of the score; depending on whether they are
specified at the end or the middle of a bar, they can be placed above the bar line or between
notes. When specified at a line break, the mark will be printed at the beginning of the next line.
\mark "Allegro"

cl c

\mark "assai" \break

c c

Allegro

"4
4\ (s O [@)
[£an YA 0

N

assai
3.0

O O

COPN

Chapter 1: Musical notation 163

Selected Snippets

Printing marks at the end of a line or a score

Marks can be printed at the end of the current line, instead of the beginning of the following
line. This is particularly useful when a mark has to be added at the end of a score — when there
is no next line.

In such cases, the right end of the mark has to be aligned with the final bar line, as demon-
strated on the second line of this example.

\relative c'' {
\override Score.RehearsalMark #'break-visibility
g2 ¢
d,2 a'
\mark \default
\break
g2 b,
cl \bar "[[|"
\override Score.RehearsalMark #'self-alignment-X
\mark "D.C. al Fine"

#begin-of-line-invisible

#RIGHT

}
N | A
)" 4 |
e C——F z
ANV Lo |
U |

3 0 D.C. al Fine
)" 4
tts——
SV
JJ >, o

Aligning marks with various notation objects

If specified, text marks may be aligned with notation objects other than bar lines.
These objects include ambitus, breathing-sign, clef, custos, staff-bar, left-edge, key-
cancellation, key-signature, and time-signature.

In such cases, text marks will be horizontally centered above the object. However this can
be changed, as demonstrated on the second line of this example (in a score with multiple staves,
this setting should be done for all the staves).

\relative c' {
el

% the RehearsalMark will be centered above the Clef

\override Score.RehearsalMark #'break-align-symbols = #'(clef)
\key a \major

\clef treble

\mark ""

el

% the RehearsalMark will be centered above the TimeSignature

\override Score.RehearsalMark #'break-align-symbols = #'(time-signature)
\key a \major

\clef treble

Chapter 1: Musical notation 164

\time 3/4
\mark nn
e2.

% the RehearsalMark will be centered above the KeySignature

\override Score.RehearsalMark #'break-align-symbols = #'(key-signature)
\key a \major

\clef treble

\time 4/4

\mark ""

el

\break
el

% the RehearsalMark will be aligned with the left edge of the KeySignature
\once \override Score.KeySignature #'break-align-anchor-alignment = #LEFT
\mark ""

\key a \major

el

% the RehearsalMark will be aligned with the right edge of the KeySignature
\once \override Score.KeySignature #'break-align-anchor-alignment = #RIGHT
\key a \major

\mark nn

el

% the RehearsalMark will be aligned with the left edge of the KeySignature
% and then shifted right by one unit.

\once \override Score.KeySignature #'break-align-anchor = #1

\key a \major

\mark nn
el
}
l l J’
() PR 4 4 4 4
)" 4 V) o LLTT LT) o LLTT
£\ r £) X ™ML ™ML 3] ™1 F @)
'(\'\ \ U [(ar Y T T 4 — bl C —
U -y U -y -y
d l
50 ut w4 w4 w8
)" AR - V1 o LLT1 o LLT1 o LLT1
7\ L L 1 § L 1 § L 1 §
'(\\ bl b b T
[Y) = = = =

Printing marks on every staff
Although text marks are normally only printed above the topmost staff, they may also be
printed on every staff.

\score {
<<

\new Staff { c¢''1l \mark "molto" c¢'' }

Chapter 1: Musical notation 165

\new Staff { c¢'l \mark "molto" c' }

>>
\layout {
\context {
\Score
\remove "Mark_engraver"
\remove "Staff_collecting_engraver"
+
\context {
\Staff
\consists "Mark_engraver"
\consists "Staff_collecting_engraver"
+
}
3
N molto
')\f’\'\ {3 [©) O
ANV
¢
A molto
b C
AN1V
¢J © o
See also

Notation Reference: [Rehearsal marks|, page 74, Section 1.8.2 [Formatting text|, page 167,
[Music notation inside markup|, page 176, Section B.6 [The Feta font], page 446.

Snippets: Section “Text” in Snippets.

Internals Reference: Section “RehearsalMark” in Internals Reference.

Known issues and warnings

If a mark is entered at the end of the last bar of the score (where there is no next line), then
the mark will not be printed at all.

Separate text
A \markup block can exist by itself, outside of any any \score block, as a “top-level expression”.
This syntax is described in Section 3.1.3 [File structure], page 307.

\markup {
Tomorrow, and tomorrow, and tomorrow...

}
Tomorrow, and tomorrow, and tomorrow...

This allows printing text separately from the music, which is particularly useful when the input
file contains several music pieces, as described in Section 3.1.2 [Multiple scores in a book],
page 306.

\score {
c'1

Chapter 1: Musical notation

\markup {

Tomorrow, and tomorrow, and tomorrow...
}
\score {

c'l
}

0)

:éﬁ:

[y, o

Tomorrow, and tomorrow, and tomorrow...

o)
B t——
e o

166

Separate text blocks can be spread over multiple pages, making it possible to print text
documents or books entirely within LilyPond. This feature, and the specific syntax it requires,

are described in [Multi-page markup|, page 179.

Predefined commands

\markup, \markuplines.

Selected Snippets

Stand-alone two-column markup

Stand-alone text may be arranged in several columns using \markup commands:

\markup {
\fill-line {
\hspace #1

\column {
\line { 0 sacrum convivium }

\line { in quo Christus sumitur, }
\line { recolitur memoria passionis ejus, }

\line { mens impletur gratia, }

\line { futurae gloriae nobis pignus datur. }

\line { Amen. }

}
\hspace #2
\column {
\line { \italic { O sacred feast } }
\line { \italic {
\line { \italic {
\line { \italic {
\line { \italic {
\line { \italic { Amen. } }
}
\hspace #1

in which Christ is received, } }

the memory of His Passion is renewed, } }

the mind is filled with grace, } }

and a pledge of future glory is given to us. } }

Chapter 1: Musical notation 167

O sacrum convivium O sacred feast
in quo Christus sumitur, in which Christ is received,
recolitur memoria passionis ejus, the memory of His Passion is renewed,
mens impletur gratia, the mind is filled with grace,
futurae gloriae nobis pignus datur. and a pledge of future glory is given to us.
Amen. Amen.

See also

Notation Reference: Section 1.8.2 [Formatting text], page 167, Section 3.1.3 [File structure],
page 307, Section 3.1.2 [Multiple scores in a book], page 306, [Multi-page markup], page 179.

Snippets: Section “Text” in Snippets.

Internals Reference: Section “TextScript” in Internals Reference.

1.8.2 Formatting text

This section presents basic and advanced text formatting, using the \markup mode specific
syntax.

Text markup introduction

A \markup block is used to typeset text with an extensible syntax called “markup mode”.

The markup syntax is similar to LilyPond’s usual syntax: a \markup expression is enclosed
in curly braces { ... }. A single word is regarded as a minimal expression, and therefore does
not need to be enclosed with braces.

Unlike simple “quoted text” indications, \markup blocks may contain nested expressions or
markup commands, entered using the backslash \ character. Such commands only affect the
first following expression.

al-\markup intenso
a2"\markup { poco \italic pia forte 1}

c el

d2_\markup { \italic "string. assai" }

e

bl \markup { \bold { molto \italic agitato } }

c
N poco pit forte molto agitato
)’ 4 [Q) ~
£\ r) 7 = O O
A U O 7] | ~F
GE | !
v intenso string. assai

A \markup block may also contain quoted text strings. Such strings are treated as minimal
text expressions, and therefore any markup command or special character (such as \ and #)
will be printed verbatim without affecting the formatting of the text. Double quotation marks
themselves may be printed by preceding them with backslashes.

al“"\italic markup..."

a_\markup { \italic "... prints \"italic\" letters!" }
aa

f \italic markup...

¢

AU O [@) <« <«

ANV

oJ

... prints "italic” letters!

To be treated as a distinct expression, a list of words needs to be enclosed with double
quotes or preceded by a command. The way markup expressions are defined affects how these

Chapter 1: Musical notation 168

expressions will be stacked, centered and aligned; in the following example, the second \markup
expression is treated the same as the first one:

ci™\markup { \center-column { a bbb ¢ } }
c1”\markup { \center-column { a { bbb ¢ } } }
c1”\markup { \center-column { a \line { bbb ¢ } } }
c1”\markup { \center-column { a "bbb c" } }

a a
bbb bbb a a

o) c c bbbc bbbc

,I"\’“ {6 <« [@) <« [@)

(o)

oJ

Markups can be stored in variables. Such variables may be directly attached to notes:
allegro = \markup { \bold \large Allegro }

{
d''8.7\allegro
d'16 d'4 r2

Allegro
o)
@ \ U7

[Y) [4

An exhaustive list of \markup-specific commands can be found in Section B.8 [Text markup
commands|, page 463.
See also

Notation Reference: Section B.8 [Text markup commands], page 463.
Snippets: Section “Text” in Snippets.

Installed files: ‘scm/markup.scm’.

Known issues and warnings

Syntax errors for markup mode can be confusing.

Selecting font and font size

Basic font switching is supported in markup mode:
di"\markup {

\bold { Pia mosso }

\italic { non troppo \underline Vivo }

}
r2 r4 r8
d,_\markup { \italic quasi \smallCaps Tromba }
fli1 d2r
N Piu mosso non troppo Vivo
X r) © - ; [V -
[[Y W [[\
SV 1 O
¢

[~
quasi TROMBA

Chapter 1: Musical notation 169

The size of the characters can also be altered in different ways:
e the font size can be set to predefined standard sizes,
e the font size can be set to an absolute value,

e the font size can also be changed relatively to its previous value.

The following example demonstrates these three methods:

f1_\markup {
\tiny espressivo
\large e
\normalsize intenso

}

a”\markup {
\fontsize #5 Sinfonia
\fontsize #2 da
\fontsize #3 camera

}

bes™\markup { (con
\larger grande
\smaller emozione
\magnify #0.6 { e sentimento })

}

d c2 r8 c bes a gl

(COH grande emozione e sentimento)

Sinfonia da camera

|
r) b e ~F 7 &
\ 7 O O | / I

espressivo € intenso

o)

P

Text may be printed as subscript or superscript. By default these are printed in a smaller
size, but a normal size can be used as well:

\markup {
\column {
\line { 1 \super st movement }

\line { 1 \normal-size-super st movement
\sub { (part two) } }

st
1 tmovement

)
1 movement
(part two)

The markup mode provides an easy way to select alternate font families. The default serif
font, of roman type, is automatically selected unless specified otherwise; on the last line of the
following example, there is no difference between the first and the second word.

\markup {
\column {
\line { Act \number 1 }
\line { \sans { Scene I. } }
\line { \typewriter { Verona. An open place. } }

Chapter 1: Musical notation 170

\line { Enter \roman Valentine and Proteus. }
}
}

Act1

Scene .

Verona. An open place.
Enter Valentine and Proteus.

Some of these font families, used for specific items such as numbers or dynamics, do not provide
all characters, as mentioned in [New dynamic marks], page 87 and [Manual repeat marks],
page 102.

When used inside a word, some font-switching or formatting commands may produce an
unwanted blank space. This can easily be solved by concatenating the text elements together:

\markup {
\column {

\line {
\concat { 1 \super st }
movement

}

\line {
\concat { \dynamic p , }
\italic { con dolce espressione }

}

st
1 movement
P, con dolce espressione

An exhaustive list of font switching, and custom font usage commands can be found in
Section B.8.1 [Font]|, page 463.

Defining custom font sets is also possible, as explained in Section 1.8.3 [Fonts|, page 179.

Predefined commands

\teeny, \tiny, \small, \normalsize, \large, \huge, \smaller, \larger.

See also

Notation Reference: Section B.8.1 [Font|, page 463, [New dynamic marks], page 87, [Manual
repeat marks|, page 102, Section 1.8.3 [Fonts], page 179.

Snippets: Section “Text” in Snippets.

Internals Reference: Section “TextScript” in Internals Reference.

Installed files: ‘scm/define-markup-commands.scm’.

Text alignment

This subsection discusses how to place text in markup mode. Markup objects can also be moved

as a whole, using the syntax described in Section “Moving objects” in Learning Manual.
Markup objects may be aligned in different ways. By default, a text indication is aligned on

its left edge: in the following example, there is no difference between the first and the second

markup.

Chapter 1: Musical notation

di-\markup { poco }

f

d-\markup { \left-align poco }

f

d-\markup { \center-align { poco } }
£

d-\markup { \right-align poco }

O Pay ~F O ~7 O ~7 O
y 4 v © © O O
U
ANV
[Y) poco poco poco poco

Horizontal alignment may be fine-tuned using a numeric value:

al-\markup { \halign #-1 poco }

el

a,-\markup { \halign #0 poco }
el

a,-\markup { \halign #0.5 poco }
el

a,-\markup { \halign #2 poco }

O O O O

7\ r £}

A U O O O O
AN\ V4

oJ poco poco poco poco

171

Some objects may have alignment procedures of their own, and therefore are not affected by
these commands. It is possible to move such markup objects as a whole, as shown for instance

in [Text marks], page 162.

Vertical alignment is a bit more complex. As stated above, markup objects can be moved
as a whole; however, it is also possible to move specific elements inside a markup block. In
this case, the element to be moved needs to be preceded with an anchor point, that can be
another markup element or an invisible object. The following example demonstrates these two
possibilities; the last markup in this example has no anchor point, and therefore is not moved.

d2"\markup {
Acte I
\raise #2 { Scéne 1 }
}
al
g_\markup {
\null
\lower #4 \bold { Trés modéré }

o P W

, "\markup {

\raise #4 \italic { Une forét. }
}

a'd ag2a

Chapter 1: Musical notation 172

Scene 1
n Acte I Une forét.
4 i !
7\ r £} | |
[[an YA W] 7 =i 7 = 7
SV &
oJ

Trés modéré

Some commands can affect both the horizontal and vertical alignment of text objects in
markup mode. Any object affected by these commands must be preceded with an anchor point:
d2"\markup {

Acte I

\translate #'(-1 . 2) "Scéne 1"

}
a 1
g_\markup {
\null
\general-align #Y #3.2 \bold "Trés modéré"

o P W

, "\markup {

\null

\translate-scaled #'(-1 . 2) \teeny "Une forét."
}

a'd a g2 a

Scéne 1 Une forét.
Acte I
|
|

]
7

p—
N (o4

QL

[= 7

P

Trés modéré

A markup object may include several lines of text. In the following example, each element
or expression is placed on its own line, either left-aligned or centered:

\markup {
\column {
a
||b Cll
\line { d e £ }
}
\hspace #10
\center-column {

a
Ilb C"
\line { d e f }
+
}
a a
be be
def def

Similarly, a list of elements or expressions may be spread to fill the entire horizontal line
width (if there is only one element, it will be centered on the page). These expressions can, in
turn, include multi-line text or any other markup expression:

Chapter 1: Musical notation 173

\markup {
\fill-line {
\line { William S. Gilbert }
\center-column {
\huge \smallCaps "The Mikado"

or
\smallCaps "The Town of Titipu"
}
\line { Sir Arthur Sullivan }
}
}
\markup {
\fill-line { 1885 }
}
William S. Gilbert THE MIKADO Sir Arthur Sullivan

or
THE TOWN OF TITIPU

1885

Long text indications can also be automatically wrapped accordingly to the given line width.
These will be either left-aligned or justified, as shown in the following example.

\markup {
\column {

\line \smallCaps { La vida breve }

\line \bold { Acto I }

\wordwrap \italic {
(La escena representa el corral de una casa de
gitanos en el Albaicin de Granada. Al fondo una
puerta por la que se ve el negro interior de
una Fragua, iluminado por los rojos resplandores
del fuego.)

}

\hspace #0

\line \bold { Acto II }

\override #'(line-width . 50)

\justify \italic {
(Calle de Granada. Fachada de la casa de Carmela
y su hermano Manuel con grandes ventanas abiertas
a través de las que se ve el patio
donde se celebra una alegre fiesta)

Chapter 1: Musical notation 174

LA VIDA BREVE

Acto 1

(La escena representa el corral de una casa de gitanos en el Albaicin de
Granada. Al fondo una puerta por la que se ve el negro interior de una
Fragua, iluminado por los rojos resplandores del fuego.)

Acto I1I

(Calle de Granada. Fachada de la casa de
Carmela y su hermano Manuel con grandes
ventanas abiertas a través de las que se ve el patio
donde se celebra una alegre fiesta)

An exhaustive list of text alignment commands can be found in Section B.8.2 [Align],
page 471.

See also
Learning Manual: Section “Moving objects” in Learning Manual.
Notation Reference: Section B.8.2 [Align], page 471, [Text marks]|, page 162.
Snippets: Section “Text” in Snippets.
Internals Reference: Section “TextScript” in Internals Reference.

Installed files: ‘scm/define-markup-commands.scm’.

Graphic notation inside markup
Various graphic objects may be added to a score, using markup commands.

Some markup commands allow decoration of text elements with graphics, as demonstrated
in the following example.

\markup \fill-line {
\center-column {
\circle Jack
\box "in the box"
\null
\line {
Erik Satie
\hspace #3
\bracket "1866 - 1925"
}
\null
\rounded-box \bold Prelude

Erik Satie [1866 - 1925]

Some commands may require an increase in the padding around the text; this is achieved
with some markup commands exhaustively described in Section B.8.2 [Align]|, page 471.

Chapter 1: Musical notation 175

\markup \fill-line {
\center-column {
\box "Charles Ives (1874 - 1954)"
\null
\box \pad-markup #2 "THE UNANSWERED QUESTION"
\box \pad-x #8 "A Cosmic Landscape"
\null
}
}
\markup \column {
\line {
\hspace #10
\box \pad-to-box #'(-5 . 20) #'(0 . 5)
\bold "Largo to Presto"
}
\pad-around #3
"String quartet keeps very even time,
Flute quartet keeps very uneven time."

¥

|Charles Ives (1874 - 1954)|

THE UNANSWERED QUESTION

| A Cosmic Landscape |

Largo to Presto

String quartet keeps very even time, Flute quartet keeps very uneven time.

Other graphic elements or symbols may be printed without requiring any text. As with any
markup expression, such objects can be combined.

\markup {
\combine
\draw-circle #4 #0.4 ##f
\filled-box #'(-4 . 4) #'(-0.5 . 0.5) #1
\hspace #5

\center-column {
\triangle ##t
\combine
\draw-line #'(0 . 4)
\arrow-head #Y #DOWN ##f

Chapter 1: Musical notation 176

o 4

Advanced graphic features include the ability to include external image files converted to the
Encapsulated PostScript format (eps), or to directly embed graphics into the input file, using
native PostScript code. In such a case, it may be useful to explicitely specify the size of the
drawing, as demonstrated below:

c1™"\markup {
\combine
\epsfile #X #10 #"./context-example.eps"
\with-dimensions #'(0 . 6) #'(0 . 10)
\postscript #"
-2 3 translate
2.7 2 scale
newpath
2 -1 moveto
4 -2 41 1 arct
4 2 3 31 arct
04031 arct

001 -11 arct
closepath
stroke"

An exhaustive list of graphics-specific commands can be found in Section B.8.3 [Graphic],
page 485.

See also

Notation Reference: Section B.8.3 [Graphic], page 485, Section 1.7 [Editorial annotations],
page 148.

Snippets: Section “Text” in Snippets.
Internals Reference: Section “TextScript” in Internals Reference.

Installed files: ‘scm/define-markup-commands.scm’, ‘scm/stencil.scm’.

Music notation inside markup
Various musical notation elements may be added to a score, inside a markup object.
Notes and accidentals can be entered using markup commands:

a2 a"\markup {
\note #"4" #1

\note-by-number #1 #1 #1.5
}
bl_\markup {

Chapter 1: Musical notation 177

\natural \semiflat \flat
\sesquiflat \doubleflat
}
\glissando
al_\markup {
\natural \semisharp \sharp
\sesquisharp \doublesharp
}
\glissando b

J-d.

hdbbibhtf =

N &1

\
\

P

Other notation objects may also be printed in markup mode:

gl bes

ees—\markup {
\finger 4
\tied-lyric #"~"
\finger 1

}

fis_\markup { \dynamic rf }

bes”\markup {
\beam #8 #0.1 #0.5

}

cis

d-\markup {
\markalphabet #8
\markletter #38

}
o) —
)’ 4 1 1L Pay
7\ r £} b O ~F
[(oY W] 1 1L Vo "
F : ot fo
p— o 4_1 f IdJ

More generally, any available musical symbol may be included separately in a markup object,
as demonstrated below; an exhaustive list of these symbols and their names can be found in
Section B.6 [The Feta font], page 446.

c2

c¢'"\markup { \musicglyph #"eight" }

c,4

c,8._\markup { \musicglyph #"clefs.G_change" }
cl6

c2”\markup { \musicglyph #"timesig.neomensural94" }

Chapter 1: Musical notation

8

N b= ®
)\’ s 7 F
[/an YA 2| I =
S [[[

eJ ! e <

178

Another way of printing non-text glyphs is described in [Fonts explained], page 180. This is

useful for printing braces of various sizes.

The markup mode also supports diagrams for specific instruments:

c1™\markup {

\fret-diagram-terse #"x;x;0;2;3;2;"

¥

¢~ \markup

{

\harp-pedal #""-v|--ov™"

}

c
c"\markup
\combine

\musicglyph #"accordion.accDiscant"

\combi

\raise #0.5 \musicglyph #"accordion.accDot"
\raise #1.5 \musicglyph #"accordion.accDot"

{

ne

N 1 [€§3
)" 4

7\ y £} [@) [@) [@) [@)
[fan Y W

YV

[Y)

Such diagrams are documented in Section B.8.5 [Instrument Specific Markup], page 492.

A whole score can even be nested inside a markup object. In such a case, the nested \score

block must contain a \layout block, as demonstrated here:

c4 d"\markup {

\score {
\relative c' { c4de f }
\layout { }
}
}
e |
cdef
()
)" 4
/\ f £)
'(“ A\ W
N e
. —)
'(“ \ W
) B -

 J

An exhaustive list of music notation related commands can be found in Section B.8.4 [Music|,

page 489.

Chapter 1: Musical notation 179

See also

Notation Reference: Section B.8.4 [Music|, page 489, Section B.6 [The Feta font|, page 446,
[Fonts explained], page 180.

Snippets: Section “Text” in Snippets.

Internals Reference: Section “TextScript” in Internals Reference.

Installed files: ‘scm/define-markup-commands.scm’, ‘scm/fret-diagrams.scm’, ‘scm/harp
-pedals.scm’.

Multi-page markup

Although standard markup objects are not breakable, a specific syntax makes it possible to enter
lines of text that can spread over multiple pages:

\markuplines {
\justified-lines {
A very long text of justified lines.

}
\wordwrap-lines {
Another very long paragraph.

A very long text of justified lines. ...

Another very long paragraph. ...

This syntax accepts a list of markups, that can be
e the result of a markup list command,
e a list of markups,

e a list of markup lists.
An exhaustive list of markup list commands can be found in Section B.9 [Text markup list
commands|, page 499.
See also

Notation Reference: Section B.9 [Text markup list commands], page 499, Section 6.4.4 [New
markup list command definition], page 431.

Snippets: Section “Text” in Snippets.
Internals Reference: Section “TextScript” in Internals Reference.

Installed files: ‘scm/define-markup-commands.scm’.

Predefined commands

\markuplines.

1.8.3 Fonts

This section presents the way fonts are handled, and how they may be changed in scores.

Chapter 1: Musical notation 180

Fonts explained

Fonts are handled through several libraries. FontConfig is used to detect available fonts on the
system; the selected fonts are rendered using Pango.

Music notation fonts can be described as a set of specific glyphs, ordered in several families.
The following syntax allows various LilyPond feta non-text fonts to be used directly in markup
mode:

al”\markup {
\vcenter {

\override #'(font-encoding . fetaBraces)
\lookup #"bracel20"
\override #'(font-encoding . fetaNumber)
\column { 1 3 }
\override #'(font-encoding . fetaDynamic)
st
\override #'(font-encoding . fetaMusic)
\lookup #"noteheads.sOpetrucci"

}
}
1
{3‘?’%
Uég !5

However, all these glyphs except the braces of various sizes contained in fetaBraces are available
using the simpler syntax described in [Music notation inside markup]|, page 176.

When using the glyphs contained in fetaBraces, the size of the brace is specified by the
numerical part of the glyph name, in arbitrary units. Any integer from 0 to 575 inclusive may
be specified, 0 giving the smallest brace. The optimum value must be determined by trial and
error. These glyphs are all left braces; right braces may be obtained by rotation, see Section 5.4.8
[Rotating objects|, page 406.

Three families of text fonts are made available: the roman (serif) font, that defaults to New
Century Schoolbook, the sans font and the monospaced typewriter font — these last two families
are determined by the Pango installation.

Each family may include different shapes and series. The following example demonstrates
the ability to select alternate families, shapes, series and sizes. The value supplied to font-size
is the required change from the default size.

\override Score.RehearsalMark #'font-family = #'typewriter
\mark \markup "Ouverture"

\override Voice.TextScript #'font-shape = #'italic
\override Voice.TextScript #'font-series = #'bold

d2. \markup "Allegro"

\override Voice.TextScript #'font-size = #-3

c4"smaller

Ouve rtu re smaller

N Allegro
el
ANV |

e) |

Chapter 1: Musical notation 181

A similar syntax may be used in markup mode, however in this case it is preferable to use the
simpler syntax explained in [Selecting font and font size|, page 168:
\markup {
\column {
\line {
\override #'(font-shape . italic)
\override #'(font-size . 4)
Idomeneo,
}
\line {
\override #'(font-family . typewriter)
{
\override #'(font-series . bold)
re
di
}
\override #'(font-family . sans)
Creta

}

Idomeneo,
re di Creta

Although it is easy to switch between preconfigured fonts, it is also possible to use other
fonts, as explained in the following sections: [Single entry fonts], page 181 and [Entire document
fonts|, page 182.

See also

Notation Reference: Section B.6 [The Feta font|, page 446, [Music notation inside markup],
page 176, [Selecting font and font size], page 168, Section B.8.1 [Font], page 463.

Single entry fonts

Any font that is installed on the operating system and recognized by FontConfig may be used
in a score, using the following syntax:

\override Staff.TimeSignature #'font-name = #"Charter"

\override Staff.TimeSignature #'font-size = #2

\time 3/4

al_\markup {
\override #'(font-name . "Vera Bold")
{ Vera Bold }

}
0
)" 4
,If\“ O
_\]
J Vera Bold

The following command displays a list of all available fonts on the operating system:
lilypond -dshow-available-fonts x
The last argument of the command can be anything, but has to be present.

Chapter 1: Musical notation 182

See also

Notation Reference: [Fonts explained], page 180, [Entire document fonts], page 182.
Snippets: Section “Text” in Snippets.
Installed files: ‘1ily/font-config-scheme.cc’.

Entire document fonts

It is possible to change the fonts to be used as the default fonts in the roman, sans and type-
writer font families by specifying them, in that order, as shown in the example below. For an
explanation of fonts, see [Fonts explained], page 180.
\paper {
myStaffSize = #20
#(define fonts
(make-pango-font-tree "Times New Roman"
"Nimbus Sans"
"Luxi Mono"
(/ myStaffSize 20)))
}

\relative c'{
ci-\markup {
roman,
\sans sans,
\typewriter typewriter. }

5 t—
¢ o .
roman, sans, typewriter.

See also

Notation Reference: [Fonts explained], page 180, [Single entry fonts|, page 181, [Selecting
font and font size|, page 168, Section B.8.1 [Font|, page 463.

Chapter 2: Specialist notation 183

2 Specialist notation

This chapter explains how to create musical notation for specific types of instrument or in specific
styles.

2.1 Vocal music

This section explains how to typeset vocal music, and make sure that the lyrics will be aligned
with the notes of their melody.

2.1.1 Common notation for vocal music

This section discusses issues related to vocal music in general, and to some particular styles of
vocal music.

References for vocal music and lyrics

Various issues may arise when engraving vocal music. Some of these are discussed in this section,
while others are explained elsewhere:

e Most styles of vocal music use written text as lyrics. An introduction to this notation is to
be found in Section “Setting simple songs” in Learning Manual.

e Vocal music is likely to require the use of markup mode, either for lyrics of for other text
elements (character’s names, etc.). This syntax is described in [Text markup introduction],
page 167.

e Lead sheets may be printed by combining vocal parts and ‘chord mode’; this syntax is
explained in Section 2.7 [Chord notation], page 255.

e ‘Ambitus’ may be added at the beginning of vocal staves, as explained in [Ambitus|, page 24.
e Vocal parts may be printed using traditional clefs, as shown in [Clef], page 11.

e Ancient vocal music is supported, as explained in Section 2.8 [Ancient notation], page 274.

Opera
TBC

Song books
TBC

Selected Snippets
Simple lead sheet

When put together, chord names, a melody, and lyrics form a lead sheet:

<<
\chords { c2 g:sus4 f e }
\relative c'' {
a4 e c8 e r4d
b2 c4(d)
}
\addlyrics { One day this shall be free __ }
>>

Chapter 2: Specialist notation 184

C Gsus4 F E

0} |
ot = £ —
v) z
Onedaythisshall be free_
See also

Notation Reference: Section 2.7 [Chord notation], page 255.

Spoken music

Such effects as ‘parlato’ or ‘Sprechgesang’ require perfomers to speak without pitch but still
with rhythm; these are notated by cross note heads, as demonstrated in [Special note heads],
page 26.

Chants
TBC

Ancient vocal music
TBC

See also

Notation Reference: Section 2.8 [Ancient notation|, page 274.

2.1.2 Entering lyrics

Lyrics explained

Since LilyPond input files are text, there is at least one issue to consider when working with
vocal music: song texts must be interpreted as text, not notes. For example, the input d should
be interpreted as a one letter syllable, not the note D. Therefore, a special lyric mode has to be
used, either explicitely or using some abbreviated methods.

Lyrics are entered in a special input mode, which can be introduced by the keyword
\lyricmode, or by using \addlyrics or \lyricsto. In this mode you can enter lyrics, with
punctuation and accents, and the input d is not parsed as a pitch, but rather as a one letter
syllable. Syllables are entered like notes, but with pitches replaced by text. For example,
\lyricmode { Twin-4 kle4 twin- kle litt- le star2 }

There are two main methods to specify the horizontal placement of the syllables, either by
specifying the duration of each syllable explicitly, like in the example above, or by automatically
aligning the lyrics to a melody or other voice of music, using \addlyrics or \lyricsto.

A word or syllable of lyrics begins with an alphabetic character, and ends with any space or
digit. The following characters can be any character that is not a digit or white space.

Any character that is not a digit or white space will be regarded as part of the syllable; one
important consequence of this is that a word can end with }, which often leads to the following
mistake:

\lyricmode { lah- lah}

In this example, the } is included in the final syllable, so the opening brace is not balanced
and the input file will probably not compile.

Similarly, a period which follows an alphabetic sequence is included in the resulting string. As
a consequence, spaces must be inserted around property commands: do not write

\override Score.LyricText #'font-shape = #'italic

but instead use

Chapter 2: Specialist notation 185

\override Score . LyricText #'font-shape = #'italic

In order to assign more than one syllable to a single note, you can surround them with quotes
or use a _ character, to get spaces between syllables, or use tilde symbol (7) to get a lyric tie.
\time 3/4
\relative c' { c2 e4 g2 e4 }

\addlyrics { gran- de_a- mi- go }
\addlyrics { pu- "ro y ho-" nes- to }
\addlyrics { pu- ro“y~ho- nes- to }

() .
= —F
o = @ =~ @

gran- de a- mi- go
pu- ro y ho- nes- to
pu-rQ y ho-nes- to

The lyric tie is implemented with the Unicode character U+203F; therefore a font that includes
this glyph (such as DejaVuLGC) has to be used. More explanations about text and non-text
fonts can be found in Section 1.8.3 [Fonts|, page 179.

To enter lyrics with characters from non-English languages, or with accented and special
characters (such as the heart symbol or slanted quotes), simply insert the characters directly

into the input file and save it with UTF-8 encoding. See Section 3.3.3 [Text encoding], page 321,
for more info.

\relative c' { e4d f ed e f e2 }
\addlyrics { He said: \Let my peo ple go". }

y @ - i i i
| | |

o —o

P>

He said: “Let my peo ple go”.

To use normal quotes in lyrics, add a backslash before the quotes. For example,

\relative c' { \time 3/4 e4 e4. e8 d4 e d c2. }
\addlyrics { "\"I" am so lone- "ly\"" said she }

NS

L3])) \)

[) | | N |
| | . |) |

g; ‘ ‘ ¢ <

"I am solone-ly"said she

The full definition of a word start in Lyrics mode is somewhat more complex.

A word in Lyrics mode begins with: an alphabetic character, _, 7, !, :, ' the control
characters ~A through “F, ~Q through "W, °Y, ==, any 8-bit character with ASCII code over 127,
or a two-character combination of a backslash followed by one of ~, ', ", or ~.

To define variables containing lyrics, the function 1lyricmode must be used.

verseOne = \lyricmode { Joy to the world the Lord is come }
\score {
<<

Chapter 2: Specialist notation 186

\new Voice = "one" \relative c'' {
\autoBeamOff
\time 2/4
c4 b8. al6 g4. £8 e4 d c2
}
\addlyrics { \verseOne }
>>
}
See also

Notation Reference: Section 1.8.3 [Fonts], page 179.

Internals Reference: Section “LyricText” in Internals Reference, Section “LyricSpace” in
Internals Reference.

Setting simple songs

The easiest way to add lyrics to a melody is to append
\addlyrics { the lyrics 1}

to a melody. Here is an example,

\time 3/4
\relative c' { c2 e4 g2. }
\addlyrics { play the game }

QL

play the game

More stanzas can be added by adding more \addlyrics sections

\time 3/4

\relative c' { c2 e4 g2. }
\addlyrics { play the game }
\addlyrics { speel het spel }
\addlyrics { joue le jeu }

)
|
|
=D
154

G St

=
play the game
speel het spel
joue le jeu

The command \addlyrics cannot handle polyphony settings. For these cases you should
use \lyricsto and \lyricmode, as will be introduced in [Lyrics explained], page 184.

Working with lyrics and variables

To define variables containing lyrics, the function \lyricmode must be used. You do not have
to enter durations though, if you add \addlyrics or \lyricsto when invoking your variable.

Chapter 2: Specialist notation 187

verseOne = \lyricmode { Joy to the world the Lord is come }

\score {
<<
\new Voice = "one" \relative c'' {
\autoBeamOff
\time 2/4
c4 b8. al6 g4. £8 e4d d c2
}
\addlyrics { \verseOne }
>>
}

For different or more complex orderings, the best way is to setup the hierarchy of staves and
lyrics first, e.g.,

\new ChoirStaff <<

\new Voice = "soprano" { music }
\new Lyrics = "sopranoLyrics" { s1 }
\new Lyrics = "tenorLyrics" { s1 }
\new Voice = "tenor" { music }

>>

and then combine the appropriate melodies and lyric lines
\context Lyrics = sopranoLyrics \lyricsto "soprano"
the lyrics

The final input would resemble

<<\new ChoirStaff << setup the music >>
\lyricsto "soprano" etc

\lyricsto "alto" etc

etc

>>

See also

Internals Reference: Section “LyricCombineMusic” in Internals Reference, Section “Lyrics”
in Internals Reference.

2.1.3 Aligning lyrics to a melody

Aligning of text with melodies can be made automatically, but if you specify the durations of
the syllables it can also be made manually. Lyrics aligning and typesetting are prepared with
the help of skips, hyphens and extender lines.

Lyrics are printed by interpreting them in the context called Section “Lyrics” in Internals
Reference.

\new Lyrics \lyricmode ...
There are two main methods to specify the horizontal placement of the syllables:

e by automatically aligning the lyrics to a melody or other voice of music, using \addlyrics
or \lyricsto.

e or by specifying the duration of each syllable explicitly, using \1yricmode

Automatic syllable durations

The lyrics can be aligned under a given melody automatically. This is achieved by combining
the melody and the lyrics with the \1yricsto expression

Chapter 2: Specialist notation 188

\new Lyrics \lyricsto name

This aligns the lyrics to the notes of the Section “Voice” in Internals Reference context called
name, which must already exist. Therefore normally the Voice is specified first, and then the
lyrics are specified with \lyricsto. The command \lyricsto switches to \lyricmode mode
automatically, so the \1lyricmode keyword may be omitted.

The following example uses different commands for entering lyrics.

<<
\new Voice = "one" \relative c'' {
\autoBeamOff
\time 2/4
c4 b8. al6 g4. £8 e4 d c2
}

% not recommended: left aligns syllables
\new Lyrics \lyricmode { Joy4 to8. thel6 world'4. the8 Lord4 is come.2 }

% wrong: durations needed

\new Lyrics \lyricmode { Joy to the earth! the Sa -- viour reigns. }
hcorrect

\new Lyrics \lyricsto "one" { No more let sins and sor -- rows grow.
>>

0]
[S pr— |
Y B

<

Joy to the world!the Lordis come.

Joy to the earth! the Sa - viour
Nomoreletsins and sor-rows grow.

8
reigns.

The second stanza is not properly aligned because the durations were not specified. A solution
for that would be to use \lyricsto.

The \addlyrics command is actually just a convenient way to write a more complicated
LilyPond structure that sets up the lyrics.

{ MUSIC }
\addlyrics { LYRICS }

is the same as

\new Voice = "blah" { music }
\new Lyrics \lyricsto "blah" { LYRICS }

Manual syllable durations

Lyrics can also be entered without \addlyrics or \lyricsto. In this case, syllables are entered
like notes — but with pitches replaced by text — and the duration of each syllable must be entered
explicitly. For example:

Chapter 2: Specialist notation 189

play2 the4 game2.
sink2 or4 swim2.

The alignment to a melody can be specified with the associatedVoice property,
\set associatedVoice = #"lala"

The value of the property (here: "lala") should be the name of a Section “Voice” in Internals
Reference context. Without this setting, extender lines will not be formatted properly.

Here is an example demonstrating manual lyric durations,

<< \new Voice = "melody" {
\time 3/4
c2 e4d g2.

}

\new Lyrics \lyricmode {
\set associatedVoice = #"melody"
play2 the4 game2.

T >>
() .
)" 4 9 |
4\ <) ‘,,-Jl .
e <
play the game
See also

Internals Reference: Section “Lyrics” in Internals Reference.

Multiple syllables to one note

In order to assign more than one syllable to a single note, you can surround them with quotes
or use a _ character, to get spaces between syllables, or use tilde symbol (~) to get a lyric tie'.

\time 3/4

\relative c' { c2 e4 g2 e4 }
\addlyrics { gran- de_a- mi- go }
\addlyrics { pu- "ro y ho-" nes- to }
\addlyrics { pu- ro“y ho- nes- to }

0
)" 4 (2] 1
7\ ()] I

B4
¢ & - ¢

gran- de a- mi- go
pu- ro y ho- nes- to
pu-rQ y ho-nes- to

Q]

See also

Internals Reference: Section “LyricCombineMusic” in Internals Reference.

1 The lyric ties is implemented with the Unicode character U+203F, so be sure to have a font (Like DejaVuLGC)
installed that includes this glyph.

Chapter 2: Specialist notation 190

Multiple notes to one syllable

Sometimes, particularly in Medieval music, several notes are to be sung on one single syllable;
such vocalises are called melismas, or melismata.

You can define melismata entirely in the lyrics, by entering _ for every extra note that has
to be added to the melisma.

Additionaly, you can make an extender line to be typeset to indicate the melisma in the
score, writing a double underscore next to the first syllable of the melisma. This example shows
the three elements that are used for this purpose (all of them surrounded by spaces): double
hyphens to separate syllables in a word, underscores to add notes to a melisma, and a double
underscore to put an extender line.

{ \set melismaBusyProperties = #'()
cd(e) ff(e)ee }

\addlyrics
{Ky -__ri_____ e}l
o)
A0 — ! !
'(\\ \ W7 | | |
Y, & L4 ~—
Ky - rnmn e

In this case, you can also have ties and slurs in the melody if you set melismaBusyProperties,
as is done in the example above.

However, the \1yricsto command can also detect melismata automatically: it only puts one
syllable under a tied or slurred group of notes. If you want to force an unslurred group of notes
to be a melisma, insert \melisma after the first note of the group, and \melismaEnd after the
last one, e.g.,

<<

\new Voice = "lala" {
\time 3/4
f4 g8
\melisma
fef
\melismaEnd
e2

}

\new Lyrics \lyricsto "lala" {
la di __ daah

}
>>

la di daah

In addition, notes are considered a melisma if they are manually beamed, and automatic
beaming (see [Setting automatic beam behavior]|, page 56) is switched off.

A complete example of a SATB score setup is in section Section “Vocal ensembles” in Learning
Manual.

Chapter 2: Specialist notation 191

Predefined commands

\melisma, \melismaEnd.

See also

Known issues and warnings

Melismata are not detected automatically, and extender lines must be inserted by hand.

Skipping notes

Making a lyric line run slower than the melody can be achieved by inserting \skips into the
lyrics. For every \skip, the text will be delayed another note. The \skip command must be
followed by a valid duration, but this is ignored when \skip is used in lyrics.

For example,

\relative c' { c c g' }
\addlyrics {
twin -- \skip 4

kle
}
()
)" 4
4\ r £)
@ \ W &
[Y) o &
twin - kle

Extenders and hyphens

In the last syllable of a word, melismata are sometimes indicated with a long horizontal line
starting in the melisma syllable, and ending in the next one. Such a line is called an extender
line, and it is entered as __ ’ (note the spaces before and after the two underscore characters).

Note: Melismata are indicated in the score with extender lines, which are entered as one double
underscore; but short melismata can also be entered by skipping individual notes, which are
entered as single underscore characters; these do not make an extender line to be typeset by
default.

4

Centered hyphens are entered as ¢ ==’ between syllables of a same word (note the spaces
before and after the two hyphen characters). The hyphen will be centered between the syllables,
and its length will be adjusted depending on the space between the syllables.

In tightly engraved music, hyphens can be removed. Whether this happens can be controlled
with the minimum-distance (minimum distance between two syllables) and the minimum-length
(threshold below which hyphens are removed).

See also

Internals Reference: Section “LyricExtender” in Internals Reference, Section “LyricHyphen”
in Internals Reference

Lyrics and repeats
TBC

Chapter 2: Specialist notation 192

2.1.4 Specific uses of lyrics

Often, different stanzas of one song are put to one melody in slightly differing ways. Such
variations can still be captured with \lyricsto

Divisi lyrics
You can display alternate (or divisi) lyrics by naming voice contexts and attaching lyrics to
those specific contexts.

\score{ <<

\new Voice = "melody" {
\relative c' {
c4
<<
{ \voiceOne c8 e }
\new Voice = "splitpart" { \voiceTwo c4 }
>>
\oneVoice c4 c | ¢
}
}

\new Lyrics \lyricsto "melody" { we shall not o- ver- come }
\new Lyrics \lyricsto "splitpart" { will }

>> }
0
ST
[Y) & TL 4 & @

we shall not o- ver- come
will

You can use this trick to display different lyrics for a repeated section.

\score{ <<
\new Voice = "melody" \relative c' {
c2e |l gel cl|
\new Voice = "verse" \repeat volta 2 {c4 de f | g1 | }

a2 b | c1}
\new Lyrics = "mainlyrics" \lyricsto melody \lyricmode {
do mi sol mi do
la si do }
\context Lyrics = "mainlyrics" \lyricsto verse \lyricmode {
do re mi fa sol }
\new Lyrics = "repeatlyrics" \lyricsto verse \lyricmode {
dodo rere mimi fafa solsol }
>>
}
o) .
)’ 4) | | | | |
4\ r) | | | 1D Q| |
[(oY W] | -~ | 1D O Q| |
ANV = e - | | ~F | |
eJ < o -
do mi solmi do do re mi fa sol

dodo rere mimi fafa solsol

Chapter 2: Specialist notation 193

60

O

NGy
\
1T

la si do

Lyrics independent of notes

In some complex vocal music, it may be desirable to place lyrics completely independently of
notes. Music defined inside 1yricrhythm disappears into the Devnull context, but the rhythms
can still be used to place the lyrics.

voice = {
c''2
\tag #'music { c¢''2 }
\tag #'lyricrhythm { c''4. c''8 }
d''1

lyr = \lyricmode { I like my cat! }

<<
\new Staff \keepWithTag #'music \voice
\new Devnull="nowhere" \keepWithTag #'lyricrhythm \voice
\new Lyrics \lyricsto "nowhere" \lyr
\new Staff { c¢c'8 ¢c' ¢' ¢' ¢' ¢c' c' c'
c''c¢c'c'c'ctc'c ¢}

>>

P
q

G e
C

dessdsss desseses

This method is recommended only if the music in the Devnull context does not contain
melismata. Melismata are defined by the Voice context. Connecting lyrics to a Devnull context
makes the voice/lyrics links to get lost, and so does the info on melismata. Therefore, if you
link lyrics to a Devnull context, the implicit melismata get ignored.

Spacing out syllables

To increase the spacing between lyrics, set the minimum-distance property of LyricSpace.

{
cccc
\override Lyrics.LyricSpace #'minimum-distance = #1.0
cccec
b
\addlyrics {
longtext longtext longtext longtext
longtext longtext longtext longtext
b

Chapter 2: Specialist notation

)

NG
.

o - -

longtext longtext longtext longtext

G

dJ 4 R R &
longtext longtext longtext longtext

To make this change for all lyrics in the score, set the property in the layout.

\score {
\relative c' {
cccc
cccc
b
\addlyrics {
longtext longtext longtext longtext
longtext longtext longtext longtext
b
\layout {
\context {
\Lyrics
\override LyricSpace #'minimum-distance =

3

(-

p_—
N (e

P

L 4 L 4 L 4 L 4

longtext longtext longtext longtext

P>

dJ 4 R R &
longtext longtext longtext longtext

Selected Snippets

#1.

0

194

Checking to make sure that text scripts and lyrics are within the margins is a relatively large
computational task. To speed up processing, LilyPond does not perform such calculations by

default; to enable it, use
\override Score.PaperColumn #'keep-inside-line =
To make lyrics avoid bar lines as well, use
\layout {
\context {
\Lyrics
\consists "Bar_engraver"
\consists "Separating_line_group_engraver"
\override BarLine #'transparent = ##t

##t

Chapter 2: Specialist notation 195

Centering lyrics between staves
TBC

2.1.5 Stanzas

Adding stanza numbers
Stanza numbers can be added by setting stanza, e.g.,

\new Voice {
\time 3/4 g2 e4 a2 f4 g2.
} \addlyrics {
\set stanza = #"1.
Hi, my name is Bert.
} \addlyrics {
\set stanza = #"2.

Oh, ché -- ri, je t'aime
}

() . | .
Yy & | | |
e ——— =k
—%?Pﬂi C— &

1. Hi, mynameis Bert.
2. Oh,ché-ri, je t'aime

These numbers are put just before the start of the first syllable.

Adding dynamics marks to stanzas

Stanzas differing in loudness may be indicated by putting a dynamics mark before each stanza.
In LilyPond, everything coming in front of a stanza goes into the StanzaNumber object; dynamics
marks are no different. For technical reasons, you have to set the stanza outside \lyricmode:

text = {
\set stanza = \markup { \dynamic "ff" "1. " }
\lyricmode {
Big bang
}
}

<<
\new Voice = "tune" {
\time 3/4
g'4d c'2
}
\new Lyrics \lyricsto "tune" \text
>>

)

o)
)\I)
JJ

<

Jf'1. Bigbang

Chapter 2: Specialist notation 196

Adding singers’ names to stanzas

Names of singers can also be added. They are printed at the start of the line, just like in-
strument names. They are created by setting vocalName. A short version may be entered as
shortVocalName.

\new Voice {
\time 3/4 g2 e4 a2 f4 g2.
} \addlyrics A{
\set vocalName = #"Bert "
Hi, my name is Bert.
} \addlyrics {
\set vocalName = #"Ernie "

Oh, ché -- ri, je t'aime

¥
o) .
)’ 4)) |
7\ [] | |
eJ

Bert Hi, mynameis Bert.
Ernie Oh, ché - ri, je t'aime

Stanzas with different rhythms

Ignoring melismata

One possibility is that the text has a melisma in one stanza, but multiple syllables in another
one. One solution is to make the faster voice ignore the melisma. This is done by setting
ignoreMelismata in the Lyrics context.

<<

\relative c¢' \new Voice = "lahlah" {
\set Staff.autoBeaming = ##f
cd
\slurDotted
£8.[(gi6])
a4

}

\new Lyrics \lyricsto "lahlah" {
more slow -- ly

}

\new Lyrics \lyricsto "lahlah" {
go
\set ignoreMelismata = ##t
fas —- ter
\unset ignoreMelismata
still

>>

Chapter 2: Specialist notation 197

4]

X ') -1
S — :

¢J E

more slow - ly
go fas-terstill

Known issues and warnings

Unlike most \set commands, \set ignoreMelismata does not work if prefixed with \once. It
is necessary to use \set and \unset to bracket the lyrics where melismata are to be ignored.

Switching to an alternative melody

More complex variations in text underlay are possible. It is possible to switch the melody for
a line of lyrics during the text. This is done by setting the associatedVoice property. In the
example

n —3—
)" 4 \
£\ y £) \)
LESS S
oJ < rr
Ju - ras - sic Park

Ty-ran - nosau -rus Rex

the text for the first stanza is set to a melody called ‘lahlah’,

\new Lyrics \lyricsto "lahlah" {
Ju -- ras -- sic Park

by

The second stanza initially is set to the 1ahlah context, but for the syllable ‘ran’, it switches
to a different melody. This is achieved with

\set associatedVoice = alternative
Here, alternative is the name of the Voice context containing the triplet.

This command must be one syllable too early, before ‘Ty’ in this case. In other words,
changing the associated Voice happens one step later than expected. This is for technical reasons,
and it is not a bug.

\new Lyrics \lyricsto "lahlah" {
\set associatedVoice = alternative % applies to "ran"

Ty --

ran --

no --

\set associatedVoice = lahlah % applies to "rus"
sau —- rus Rex

¥

The underlay is switched back to the starting situation by assigning lahlah to associatedVoice.

Printing stanzas at the end

Sometimes it is appropriate to have one stanza set to the music, and the rest added in verse
form at the end of the piece. This can be accomplished by adding the extra verses into a
\markup section outside of the main score block. Notice that there are two different ways to
force linebreaks when using \markup.

melody = \relative c' {
edcdl| eeee|
dded | c1 |

Chapter 2: Specialist notation 198

text = \lyricmode {
\set stanza = #"1." Ma- ry had a lit- tle lamb,
its fleece was white as snow.

}
\score{ <<
\new Voice = "one" { \melody }
\new Lyrics \lyricsto "one" \text
>>
\layout { }
}

\markup { \column{
\line{ Verse 2. }
\line{ A1l the children laughed and played }
\line{ To see a lamb at school. }
}
}
\markup{
\wordwrap-string #"
Verse 3.

Mary took it home again,

It was against the rule."

}
o)
-] i i
[(YA W] | |
o o o ¥ ° o o o
1. Ma-ryhad a lit- tle lamb, its fleece was white as snow.
Verse 2.

All the children laughed and played
To see a lamb at school.

Verse 3.
Mary took it home again,
It was against the rule.

Printing stanzas at the end in multiple columns

When a piece of music has many verses, they are often printed in multiple columns across the
page. An outdented verse number often introduces each verse. The following example shows
how to produce such output in LilyPond.

melody = \relative c' {
ccccldddd
}

text = \lyricmode {

Chapter 2: Specialist notation

\set stanza = #"1." This is verse one.
It has two lines.

\score{ <<
\new Voice = "one" { \melody }
\new Lyrics \lyricsto "one" \text
>>
\layout { }
}

\markup {
\fill-line {
\hspace #0.1 % moves the column off the left margin;
% can be removed if space on the page is tight
\column {
\line { \bold "2."
\column {
"This is verse two."
"It has two lines."
+
b
\hspace #0.1 % adds vertical spacing between verses
\line { \bold "3."
\column {
"This is verse three."
"It has two lines."
b
X
}
\hspace #0.1 7% adds horizontal spacing between columns;
% if they are still too close, add more " " pairs
% until the result looks good
\column {
\line { \bold "4."
\column {
"This is verse four."
"It has two lines."
3
}
\hspace #0.1 % adds vertical spacing between verses
\line { \bold "5."
\column {
"This is verse five."
"It has two lines."
+
b
X
\hspace #0.1 % gives some extra space on the right margin;
% can be removed if page space is tight

}

199

Chapter 2: Specialist notation

p—_—
N (@4

G

o O @

E

@

1. Thisis verse one. It has two lines.

2. This is verse two.
It has two lines.

3. This is verse three.

It has two lines.

See also

Internals Reference: Section “LyricText” in Internals Reference, Section “StanzaNumber”

Internals Reference.

4. This is verse four.
It has two lines.

5. This is verse five.
It has two lines.

2.2 Keyboard and other multi-staff instruments

Un peu retenu

trés expressif

200

in

TN W S
S m —p | — [— NSO
LW J"H J J‘& J £ 4 J o F m—>n il
g’- #ﬂ}}.#aﬁ :?; h h h = — \J 0 7 \J
b = N —— —— F: F ~
o/ —
ped.
Rallentando é Lent 80;;\- 1.
Lk 5 =1 ——F s
w3 el (@ B (B I

This section discusses several aspects of music notation that are unique to keyboard instru-
ments and other instruments notated on many staves, such as harps and vibraphones. For the

purposes of this section this entire group of multi-staff instruments is called “keyboards”
short, even though some of them do not have a keyboard.

2.2.1 Common notation for keyboards

This section discusses notation issues that may arise for most keyboard instruments.

References for keyboards

Keyboard instruments are usually notated with Piano staves.

for

These are two or more normal

staves coupled with a brace. The same notation is also used for other keyed instruments. Organ
music is normally written with two staves inside a PianoStaff group and third, normal staff

for the pedals.

Chapter 2: Specialist notation 201

The staves in keyboard music are largely independent, but sometimes voices can cross between
the two staves. This section discusses notation techniques particular to keyboard music.

Several common issues in keyboard music are covered elsewhere:

e Keyboard music usually contains multiple voices and the number of voices may change
regularly; this is described in [Collision resolution], page 112.

e Keyboard music can be written in parallel, as described in [Writing music in parallel],
page 119.

e Fingerings are indicated with [Fingering instructions|, page 150.

e Organ pedal indications are inserted as articulations, see Section B.10 [List of articulations],
page 500.

e Vertical grid lines can be shown with [Grid lines|, page 156.

e Keyboard music often contains Laissez vibrer ties as well as ties on arpeggios and tremolos,
described in [Ties], page 35.

e Placing arpeggios across multiple voices and staves is covered in [Arpeggiol, page 94.
e Tremolo marks are described in [Tremolo repeats], page 106.

e Several of the tweaks that can occur in keyboard music are demonstrated in Section “Real
music example” in Learning Manual.

e Hidden notes can be used to produce ties that cross voices, as shown in Section “Other uses
for tweaks” in Learning Manual.

See also
Learning Manual: Section “Real music example” in Learning Manual, Section “Other uses
for tweaks” in Learning Manual.

Notation Reference: [Grouping staves], page 123, [Instrument names]|, page 140, [Collision
resolution|, page 112, [Writing music in parallel], page 119, [Fingering instructions], page 150,
Section B.10 [List of articulations], page 500, [Grid lines|, page 156, [Ties]|, page 35, [Arpeggio],
page 94, [Tremolo repeats|, page 106.

Internals Reference: Section “PianoStaff” in Internals Reference.

Snippets: Section “Keyboards” in Snippets.

Known issues and warnings

Dynamics are not automatically centered, but workarounds do exist. One option is the ‘piano
centered dynamics’ template under Section “Piano templates” in Learning Manual; another
option is to increase the staff-padding of dynamics as discussed in Section “Moving objects”
in Learning Manual.

Changing staff manually
Voices can be switched between staves manually, using the command
\change Staff = staffname

The string staffname is the name of the staff. It switches the current voice from its current staff
to the staff called staffname. Typical values for staffname are "up" and "down", or "RH" and
IILHII‘

Cross-staff notes are beamed automatically:

\new PianoStaff <<
\new Staff = "up" {
<e' c¢'>8
\change Staff = "down"

Chapter 2: Specialist notation 202

g8 fis g
\change Staff
<g'' c''>8
\change Staff
e8 dis e
\change Staff
}
\new Staff = "down" {
\clef bass
% keep staff alive
sl

}
>>

||upll

"down"

||upll

)’ A
4\ r) I
[(v Y O I
t\ ’
0
0

j
o

d \ W] T

If the beaming needs to be tweaked, make any changes to the stem directions first. The beam
positions are then measured from the center of the staff that is closest to the beam. For a simple
example of beam tweaking, see Section “Fixing overlapping notation” in Learning Manual.

See also

Learning Manual: Section “Fixing overlapping notation” in Learning Manual.
Notation Reference: [Stems|, page 155, [Automatic beams|, page 54.
Snippets: Section “Keyboards” in Snippets

Internals Reference: Section “Beam” in Internals Reference, Section “ContextChange” in
Internals Reference.

Changing staff automatically

Voices can be made to switch automatically between the top and the bottom staff. The syntax
for this is

\autochange ...music...

This will create two staves inside the current staff group (usually a PianoStaff), called "up"
and "down". The lower staff will be in the bass clef by default. The autochanger switches on
the basis of the pitch (middle C is the turning point), and it looks ahead skipping over rests to
switch in advance.

\new PianoStaff {
\autochange {
gd abc'
d'drag

}
+

Chapter 2: Specialist notation 203

)" 4
4\ y £)
U
ANV,
o ®
J AN
~Je fo | r 2|
\ U7 | [y !

A \relative section that is outside of \autochange has no effect on the pitches of the music,
so if necessary, put \relative inside \autochange.

If additional control is needed over the individual staves, they can be created manually with
the names "up" and "down". The \autochange command will then switch its voice between the
existing staves.

[Note: If staves are created manually, they must be named "up" and "down". }

For example, staves must be created manually in order to place a key signature in the lower
staff:

\new PianoStaff <<
\new Staff = "up" {

\new Voice = "melOne" {
\key g \major
\autochange \relative c' {

g8 bacbdce
d8 r fis, g a2
}
}
}
\new Staff = "down" {
\key g \major
\clef bass
}

>>

e v =

—m

N @]

G

e

See also
Notation Reference: [Changing staff manually], page 201.
Snippets: Section “Keyboards” in Snippets.

Internals Reference: Section “AutoChangeMusic” in Internals Reference.

Known issues and warnings

The staff switches may not end up in optimal places. For high quality output, staff switches
should be specified manually.

Chords will not be split across the staves; they will be assigned to a staff based on the first
note named in the chord construct.

Chapter 2: Specialist notation 204

Staff-change lines

Whenever a voice switches to another staff, a line connecting the notes can be printed automat-
ically:
\new PianoStaff <<
\new Staff = "one" {
\showStaffSwitch
cl
\change Staff = "two"
b2 a
}
\new Staff = "two" {
\clef bass
s1%2
}
>>

G
q

\
2
rax ~
iy OO)
Z \ W]

Predefined commands
\showStaffSwitch, \hideStaffSwitch.

See also
Snippets: Section “Keyboards” in Snippets.

Internals Reference: Section “Note_head_line_engraver” in Internals Reference, Section
“VoiceFollower” in Internals Reference.

Cross-staff stems
Chords that cross staves may be produced:

\new PianoStaff <<
\new Staff {
\relative c¢' {
f8 e4 d8 d f e4
}
}
\new Staff {
\relative c¢' {
<< {
\clef bass
% stems may overlap the other staff
\override Stem #'cross-staff = ##t
% extend the stems to reach other other staff
\override Stem #'length = #12
% do not print extra flags
\override Stem #'flag-style = #'no-flag

Chapter 2: Specialist notation 205

% prevent beaming as needed
a8 g4 £f8 f bes\noBeam g4

b

\\

{
f,2 besd ¢

3 >>

b
3

>>

. \ W i-,\r F

Selected Snippets

Indicating cross-staff chords with arpeggio bracket

An arpeggio bracket can indicate that notes on two different staves are to be played with the
same hand. In order to do this, the PianoStaff must be set to accept cross-staff arpeggios and
the arpeggios must be set to the bracket shape in the PianoStaff context.

(Debussy, Les collines d’Anacapri, m. 65)

\new PianoStaff <<
\set PianoStaff.connectArpeggios = ##t
\override PianoStaff.Arpeggio #'stencil = #ly:arpeggio: :brew-chord-bracket
\new Staff {
\relative c' {
\key b \major
\time 6/8
b8-. (\arpeggio fis'-.\> cis-. e-. gis-. b-.)\!\fermata"\laissezVibrer
\bar n | | n
}
}
\new Staff {
\relative c' {
\clef bass
\key b \major
<<
{
<a e cis>2.\arpeggio
}
\\
{
<a, e a,>2.
}

>>

Chapter 2: Specialist notation 206

>>
0 &
([—#pte o “F‘T
A ST O " g1l
e Q P
I] .

| SO

Y

Ay

Y
0 o=pr
Y

1]

See also

Snippets: Section “Keyboards” in Snippets.
Internals Reference: Section “Stem” in Internals Reference.

2.2.2 Piano

This section discusses notation issues that relate most directly to the piano.

Piano pedals

Pianos generally have three pedals that alter the way sound is produced: sustain, sostenuto
(sos.), and una corda (U.C.). Sustain pedals are also found on vibraphones and celestas.

c4\sustainOn d e g

<c, f a>1\sustainOff
c4\sostenutoOn e g c,
<bes d f>1\sostenutoOff
c4\unaCorda d e g

<d fis a>1\treCorde

0] e o o ocd
~F 24 P- D24
O P hes T
J | VO
ANV | | | |
U | ' | | |
. # Sost. Ped. ______ | una corda tre corde

There are three styles of pedal indications: text, bracket, and mixed. The sustain pedal
and the una corda pedal use the text style by default while the sostenuto pedal uses mixed by
default.

c4\sustainOn g c2\sustain0ff

\set Staff.pedalSustainStyle = #'mixed
c4\sustainOn g c d
d\sustainOff\sustainOn g, c2\sustainOff
\set Staff.pedalSustainStyle = #'bracket
c4\sustainOn g c d
d\sustainOff\sustainOn g, c2

\bar |||'n
0 7 i e 7 i Frﬂ'_' | il
GE= C | i

Fed. *

Chapter 2: Specialist notation 207

The placement of the pedal commands matches the physical movement of the sustain pedal
during piano performance. Pedalling to the final bar line is indicated by omitting the final pedal
up command.

See also
Notation Reference: [Ties]|, page 35.
Snippets: Section “Keyboards” in Snippets.

Internals Reference: Section “SustainPedal” in Internals Reference, Section “Sus-
tainPedalLineSpanner” in Internals Reference, Section “SustainEvent” in Internals Reference,
Section “SostenutoPedal” in Internals Reference, Section “SostenutoPedallineSpanner” in In-
ternals Reference, Section “SostenutoEvent” in Internals Reference, Section “UnaCordaPedal”
in Internals Reference, Section “UnaCordaPedalLineSpanner” in Internals Reference, Section
“UnaCordaEvent” in Internals Reference, Section “PianoPedalBracket” in Internals Reference,
Section “Piano_pedal_engraver” in Internals Reference.

2.2.3 Accordion

This section discusses notation that is unique to the accordion.

Discant symbols

Accordions are often built with more than one set of reeds that may be in unison with, an octave
above, or an octave below the written pitch. Each accordion maker has different names for the
shifts that select the various reed combinations, such as oboe, musette, or bandonium, so a
system of symbols has come into use to simplify the performance instructions.

Selected Snippets
Accordion-discant symbols

Accordion discant-specific symbols are added using \markup. The vertical placement of the
symbols can be tweaked by changing the \raise arguments.

discant = \markup {
\musicglyph #"accordion.accDiscant"

3
dot = \markup {
\musicglyph #"accordion.accDot"

}
\layout { ragged-right = ##t }

% 16 voets register

accBasson = "\markup {
\combine
\discant
\raise #0.5 \dot

}

% een korig 8 en 16 voets register
accBandon = ~\markup {
\combine
\discant
\combine
\raise #0.5 \dot

Chapter 2: Specialist notation

\raise #1.5 \dot

accVCello = “\markup {
\combine
\discant
\combine
\raise #0.5 \dot
\combine
\raise #1.5 \dot
\translate #'(1

% 4-8-16 voets register
accHarmon = ~\markup {
\combine
\discant
\combine
\raise #0.5 \dot
\combine
\raise #1.5 \dot
\raise #2.5 \dot

accTrombon = “\markup {
\combine
\discant
\combine
\raise #0.5 \dot
\combine
\raise #1.5 \dot
\combine
\translate #'(1
\translate #'(-1

% eenkorig 4 en 16 voets register

accOrgan = ~\markup {
\combine
\discant
\combine
\raise #0.5 \dot
\raise #2.5 \dot

accMaster = "\markup {
\combine
\discant
\combine
\raise #0.5 \dot
\combine
\raise #1.5 \dot

0) \raise #1.5 \dot

. 0) \raise #1.5 \dot
. 0) \raise #1.5 \dot

208

Chapter 2: Specialist notation 209

\combine
\translate #'(1 . 0) \raise #1.5 \dot
\combine
\translate #'(-1 . 0) \raise #1.5 \dot
\raise #2.5 \dot

accAccord = “\markup {
\combine
\discant
\combine
\raise #1.5 \dot
\combine
\translate #'(1 . 0) \raise #1.5 \dot
\combine
\translate #'(-1 . 0) \raise #1.5 \dot
\raise #2.5 \dot

+
accMusette = “\markup {
\combine
\discant
\combine
\raise #1.5 \dot
\combine
\translate #'(1 . 0) \raise #1.5 \dot
\translate #'(-1 . 0) \raise #1.5 \dot
+
accCeleste = "\markup {
\combine
\discant
\combine
\raise #1.5 \dot
\translate #'(-1 . 0) \raise #1.5 \dot
}
accOboe = “\markup {
\combine
\discant
\combine

\raise #1.5 \dot
\raise #2.5 \dot

}
accClarin = ~\markup {
\combine
\discant
\raise #1.5 \dot
}

accPiccolo = “\markup {

Chapter 2: Specialist notation

\combine
\discant
\raise #2.5 \dot
}
accViolin = "\markup {
\combine
\discant
\combine
\raise #1.5 \dot
\combine
\translate #'(1
\raise #2.5 \dot
}

\relative c'' {
c4 d\accBasson
c4 d\accBandon
c4 d\accVCello
c4 d\accHarmon
c4 d\accTrombon e f
\break
c4 d\accOrgan e f
c4 d\accMaster e f
c4 d\accAccord e f
c4 d\accMusette e f
c4 d\accCeleste e f
\break
c4 d\accOboe e f
c4 d\accClarin e f
c4 d\accPiccolo e f
c4 d\accViolin e f

o 0 0 0
Fh Hh b Fh

. 0) \raise #1.5 \dot

ANV . | = ' | I E | FF | I ¢
[y, ! " l I —
6p & & & & =

o — — — :

hy ® 8

ANV I | ! |

e) |

See also

Snippets: Section “Keyboards” in Snippets.

210

Chapter 2: Specialist notation 211

2.2.4 Harp

This section discusses notation issues that are unique to the harp.

References for harps

Some common characteristics of harp music are covered elsewhere:
e The glissando is the most characterisic harp technique, [Glissando], page 93.
e A bisbigliando is written as a tremelo [Tremolo repeats|, page 106
e Natural harmonics are covered under [Harmonics|, page 213.

e For directional arpeggios and non-arpeggios, see [Arpeggio|, page 94.

See also

Notation Reference: [Tremolo repeats], page 106 [Glissando], page 93 [Arpeggio], page 94
[Harmonics], page 213

Harp pedals

Harps have seven strings per octave that may be sounded at the natural, flattened, or sharpened
pitch. In lever harps, each string is adjusted individually, but in pedal harps every string with
the same pitch name is controlled by a single pedal. From the player’s left to right, the pedals
are D, C, and B on the left and E, F, G, and A on the right. The position of the pedals may be
indicated with text marks:

\textLengthOn
cisl_\markup \concat \vcenter { [D \flat C \sharp B|E \sharp F \sharp G A \flat] }
c!1_\markup \concat \vcenter {[C \natural]}

Lh L
(1O IILQ)
\ Wk 1

[DL,CHB I ERFRGAL] [Clf

P>

or pedal diagrams:

\textLengthOn
cisl_\markup { \harp-pedal #"“v-|vv-"" }
c!1_\markup { \harp-pedal #"“o--|vv-"" }

)" 4 1L

/\ FENIN e O

e _UT

SV

JJ 1 1 1 1
1 il

The \harp-pedal command accepts a string of characters, where ~ is the highest pedal
position (flattened pitch), - is the middle pedal postion (natural pitch), v is the lowest pedal
position (sharpened pitch), and | is the divider. A prefixed o will circle the following pedal
symbol.

See also

Notation Reference: [Text scripts|, page 160 Section B.8.5 [Instrument Specific Markup],
page 492

Chapter 2: Specialist notation

2.3 Unfretted string instruments

lentement [1n 2)sp. .
s. vib. p. vib. s. vib.
fatigué mV.. ~N Ve ~ mV.
[0} v v v
)" 4
s 1 I I I

ﬁ F@C Ft:vr Ftcvrvuvar

0 0 0
————— Pp
mf<——o mf—<—"~— mf—fFf
s.p.
accel... n s.p n.
™ ™ ™ ™ p. vib
H IV v
Yy e+ s+ s+ s s s s .
y i T T T T T T —— p—— P T e ————r
[a0} | | | | | I I | | | | | | I — — —— | | | |
E | T y EEE— J— [0} (o] o (o]
3 3 3
mf Jf
s.p n s.p n
ritar.. p. vib. m. vib.
™ ™ ™ ™
A IV v v s
)" 4 7
7\] [T I I I I I I I I I I
N | —— —— — | Il Il Il I I Il Il Il Il Il Il : 1 : n : T : } —
:i v io dg‘ io e g) ‘g ‘I_iig _Ii I_iig _Ii ¥ Uz je 114 f"{_/w
0
Prp

212

This section provides information and references which are helpful when writing for unfretted

string instruments, principally orchestral strings.

2.3.1 Common notation for unfretted strings

There is little specialist notation for unfretted string instruments. The music is notated on a
single staff, and usually only a single voice is required. Two voices might be required for some

double-stopped or divisi passages.

References for unfretted strings

Most of the notation which is useful for orchestral strings and other bowed instruments is covered

elsewhere:

e Textual indications such as “pizz.” and “arco” are added as simple text — see [Text scripts],

page 160.

e Fingerings, including the thumb indication, are described in [Fingering instructions],

page 150.

e Double stopping is normally indicated by writing a chord, see [Chorded notes], page 108.

Directives for playing chords may be added, see [Arpeggio], page 94.

e A template for a string quartet can be found in Section “String quartet” in Learning Manual.

Others are shown in the snippets.

See also

Learning Manual: Section “String quartet” in Learning Manual.

Notation Reference: [Text scripts], page 160, [Fingering instructions], page 150, [Chorded

notes], page 108, [Arpeggio|, page 94.
Snippets: Section “Unfretted strings” in Snippets.

Chapter 2: Specialist notation 213

Bowing indications

Bowing indications are created as articulations, which are described in [Articulations and orna-
mentations|, page 81.

The bowing commands, \upbow and \downbow, are used with slurs as follows:

c4(\downbow d) e(\upbow f)

and the following example shows three ways in which an open A string on a violin might be
indicated:

a4 \open
a”\markup { \teeny "II" }
a2"\markup { \small "sul A" }

oIISulA
o
oJ

Predefined commands

\downbow, \upbow, \open.

See also

Notation Reference: [Articulations and ornamentations|, page 81, [Slurs|, page 89.

Harmonics
Natural harmonics

Natural harmonics can be notated in several ways. A diamond-shaped note head generally
means to touch the string where you would stop the note if it were not a diamond.

[Note: Harmonics must be defined inside a chord construct even if there is only a single note. }

Dotted harmonics indicated with \harmonic do not show the dots. The context property
harmonicDots should be set if dots are required.

<d\harmonic>4 <e\harmonic>2.
\set harmonicDots = #i#t
<d\harmonic>4 <e\harmonic>2.

-
N (@
4

P

Alternatively a normal note head is shown at the pitch to be sounded together with a small
circle to indicate it should be played as a harmonic:

Chapter 2: Specialist notation 214

d2"\flageolet d_\flageolet

0 o
o ' (o)

A smaller circle may be created, see the snippet list in [References for unfretted strings,
page 212.

Artificial harmonics

Artificial harmonics are notated with two notes, one with a normal note head indicating the
stopped position and one with an open diamond note head to indicate the harmonic position.

<e a\harmonic>2 <c g'\harmonic>

) .

/\ r £) |

() <
See also

Music Glossary: Section “harmonics” in Music Glossary.

Notation Reference: [Special note heads], page 26, [References for unfretted strings|, page 212.
Snap (Barték) pizzicato

Selected Snippets

Snap-pizzicato markup (" Bartok pizzicato")

A snap-pizzicato (also known as "Bartok pizzicato") is a "strong pizzicato where the string is
plucked vertically by snapping and rebounds off the fingerboard of the instrument" (Wikipedia).
It is denoted by a cicle with a vertical line going from the center upwards outside the circle.
While Lilypond does not have a pre-defined command to created this markup, it is easy to create
a definition and place it directly into the lilypond file.

#(define-markup-command (snappizz layout props) ()
(interpret-markup layout props
(markup #:stencil
(ly:stencil-translate-axis
(ly:stencil-add
(make-circle-stencil 0.7 0.1 #f)
(ly :make-stencil
(1ist 'draw-line 0.1 0 0.1 0 1)
'(-0.1 . 0.1) '(0.1 . 1))
0.7 X))))

snapPizzicato = \markup \snappizz

% now it can be used as \snappizzicato after the note/chord
% Note that a direction (-, ~ or _) is required.
\relative c' {

c4"\snapPizzicato

% This does NOT work:

%<c e g>\snapPizzicato

Chapter 2: Specialist notation 215

<c' e g>-\snapPizzicato
<c' e g>"\snapPizzicato
<c, e g>_\snapPizzicato

}
$
o) 0)
Yo ®s o

2.4 Fretted string instruments

4

. s A
PR T gl et i b el

This section discusses several aspects of music notation that are unique to fretted string
instruments.

2.4.1 Common notation for fretted strings

This section discusses common notation that is unique to fretted string instruments.

References for fretted strings

Music for fretted string instruments is normally notated on a single staff, either in traditional
music notation or in tablature. Sometimes the two types are combined, and it is especially
common in popular music to use chord diagrams above a staff of traditional notation. The guitar
and the banjo are transposing instruments, sounding an octave lower than written. Scores for
these instruments should use the "treble_8" clef. Some other elements pertinent to fretted
string instruments are covered elsewhere:

e Fingerings are indicated as shown in [Fingering instructions|, page 150.

e Instructions for Laissez vibrer ties as well as ties on arpeggios and tremolos can be found

in [Ties], page 35.
e Instructions for handling multiple voices can be found in [Collision resolution], page 112.
e Instructions for indicating harmonics can be found in [Harmonics], page 213.

Chapter 2: Specialist notation 216

See also

Notation Reference: [Fingering instructions], page 150, [Ties], page 35, [Collision resolu-
tion], page 112, [Instrument names|, page 140, [Writing music in parallel], page 119, [Arpeggio],
page 94, Section B.10 [List of articulations|, page 500, [Clef], page 11.

String number indications

The string on which a note should be played may be indicated by appending \number to a note
inside a chord construct <>.

Note: String numbers must be defined inside a chord construct even if there is only a single
note.

\clef "treble_8"
<c\5>4 <e\4> <g\3>2
<c,\b e\4 g\3>1

®

o ® @ @)
)" 4 P

G ig

& -©-

eg ®

When fingerings and string indications are used together, their placement is controlled by
the order in which the two items appear in the code:

\clef "treble_8"
<g\3-0>2
<g-0\3>

g
@e
o@®@

e

%

Selected Snippets
Controlling the placement of chord fingerings
The placement of fingering numbers can be controlled precisely.

\relative c' {

\set fingeringOrientations = #'(left)
<c-1 e-3 a-5>4
\set fingeringOrientations = #'(down)

<c-1 e-3 a-5>4
\set fingeringOrientations
<c-1 e-3 a-5>4

#' (down right up)

\set fingeringOrientations = #' (up)
<c-1 e-3 a-5>4

\set fingeringOrientations = #'(left)
<c-1>2

\set fingeringOrientations = #'(down)
<e-3>2

Chapter 2: Specialist notation 217

5
3
0 L 9 1
4 I — — ,
EETEEE |
d
16
5 1 3
3
1

Allowing fingerings to be printed inside the staff

By default, vertically oriented fingerings are positioned outside the staff. However, this
behavior can be canceled.
\relative c' {

<c-1 e-2 g-3 b-5>2

\once \override Fingering #'staff-padding = #'()

<c-1 e-2 g-3 b-5>2

}
5
o) 3 5
)" 4 3
4\ r £
'(\'\ \ U7
2 2
1 1
See also

Notation Reference: [Fingering instructions], page 150.
Snippets: Section “Fretted strings” in Snippets.

Internals Reference: Section “StringNumber” in Internals Reference, Section “Fingering” in
Internals Reference.

Default tablatures

Tablature notation is used for notating music for plucked string instruments. Pitches are not
denoted with note heads, but by numbers indicating on which string and fret a note must be
played. LilyPond offers limited support for tablature.

The string number associated with a note is given as a backslash followed by a number. By
default, string 1 is the highest, and the tuning defaults to the standard guitar tuning (with 6
strings). The notes are printed as tablature, by using TabStaff and TabVoice contexts
\new TabStaff {

a,4\5 c'\2 a\3 e'\1

e\4d c'\2 a\3 e'\1
}

°
S
|

)
A%

N

[\]

bors) <Q
[y
[y

[\]

=}

When no string is specified for a note, the note is assigned to the highest string that can
generate the note with a fret number greater than or equal to the value of minimumFret. The
default value for minimumFret is 0.

Chapter 2: Specialist notation 218

\new StaffGroup <<

\new Staff \relative c {
\clef "treble_8"
cl6 def gb
c,16 d e £ g4

}

\new TabStaff \relative c {
cl6 def gé
\set TabStaff.minimumFret = #5
c,16 d e £ g4

}

>>

/() .
)’ 4 |
7\ r) |
@ \ W] | ‘
eg o o
e

0—2—3 5—

2 : +—5-7-8

~ O

Harmonic indications and slides can be added to tablature notation.
\new TabStaff {
\new TabVoice {
<c g'\harmonic> d\2\glissando e\2

}
}
3\
—9/?1—3"5—
\ 97
o2

Selected Snippets
Stem and beam behavior in tablature

The direction of stems is controlled the same way in tablature as in traditional notation.
Beams can be made horizontal, as shown in this example.

\new TabStaff {
\relative c {
gl bdgbdgh
\stemDown

\override Beam #'damping = #+inf.0

g,,16 bdgbdgh
3

3
3—7 3—7
T o 1-0-3 ;0
A% I\U | l\“

2 2— = o

w
0

Chapter 2: Specialist notation 219

Polyphony in tablature

Polyphony is created the same way in a TabStaff as in a regular staff.
upper = \relative c' {

\time 12/8

\key e \minor

\voiceOne

rd. r8 e, fis gl6 bgee' bcbagfis e

lower = \relative c¢ {
\key e \minor

\voiceTwo
rl6 ed c b agd fis8 e fis ga b c
}
\score {
<<
\new StaffGroup = "tab with traditional" <<
\new Staff = "guitar traditional" <<
\clef "treble_8"
\context Voice = "upper" \upper
\context Voice = "lower" \lower
>>
\new TabStaff = "guitar tab" <<
\context TabVoice = "upper" \upper
\context TabVoice = "lower" \lower
>>
>>
>>
}
0 f e 2 ¥ - -
5—& — o
6—8§— ==
LS S Ay
Q- Y é I
T2 2% Lt
T oO— 2—0 2—4 2 — - 4—2—
- v 3270 > 09 3 ¢ 2 3
N\ ! - T 2 n i
See also

Notation Reference: [Stems|, page 155.
Snippets: Section “Fretted strings” in Snippets.

Internals Reference: Section “TabNoteHead” in Internals Reference, Section “TabStaff” in
Internals Reference, Section “TabVoice” in Internals Reference, Section “Beam” in Internals
Reference.

Chapter 2: Specialist notation 220

Known issues and warnings
Chords are not handled in a special way, and hence the automatic string selector may easily
select the same string for two notes in a chord.
In order to handle \partcombine, a TabStaff must use specially-created voices:
melodia = \partcombine { e4 g g g }H ed e e e }
<<
\new TabStaff <<

\new TabVoice = "one" si
\new TabVoice = "two" si
\new TabVoice = "shared" si
\new TabVoice = "solo" si

{ \melodia }
>>
>>

a2

e 0—0—0—
2—2—2—2—

bors) <Q

Guitar special effects are limited to harmonics and slides.

Custom tablatures

LilyPond tabulature automatically calculates the fret for a note based on the string to which
the note is assigned. In order to do this, the tuning of the strings must be specified. The tuning
of the strings is given in the StringTunings property.

LilyPond comes with predefined string tunings for banjo, mandolin, guitar and bass guitar.
Lilypond automatically sets the correct transposition for predefined tunings. The following
example is for bass guitar, which sounds an octave lower than written.

<<

\new Staff {
\clef "bass_8"
\relative c, {

cd def
}

}

\new TabStaff {
\set TabStaff.stringTunings = #bass-tuning
\relative c, {

cdde f
}
}

>>

0—2—3—

w

]S
®

Chapter 2: Specialist notation 221

The default string tuning is guitar-tuning, which is the standard EADGBE tuning. Some
other predefined tunings are guitar-open-g-tuning, mandolin-tuning and banjo-open-g-
tuning. The predefined string tunings are found in scm/output-1ib.scm.

A string tuning is a Scheme list of string pitches, one for each string, ordered by string number
from 1 to N, where string 1 is at the top of the tablature staff and string N is at the bottom.
This ordinarily results in ordering from highest pitch to lowest pitch, but some instruments (e.g.
ukulele) do not have strings ordered by pitch.

A string pitch in a string tuning list is the pitch difference of the open string from middle
C measured in semitones. The string pitch must be an integer. Lilypond calculates the actual
pitch of the string by adding the string tuning pitch to the actual pitch for middle C.

LilyPond automatically calculates the number of strings in the TabStaff as the number of
elements in stringTunings.

Any desired string tuning can be created. For example, we can define a string tuning for a
four-string instrument with pitches of a'',; d'', g', and c':
mynotes = {
c 1 4 e ! gl c [|
el] gl 1 b|] Cl L]

<<
\new Staff {
\clef treble
\mynotes
}
\new TabStaff {
\set TabStaff.stringTunings = #'(21 14 7 0)

\mynotes
}
>>
-
() o £
)" 4) [|
7\ £} | |
H— o
[Y) &
F— — 2—3—
7 0—5
L2 0—4
See also

Installed Files: ‘scm/output-lib.scm’.
Snippets: Section “Fretted strings” in Snippets.

Internals Reference: Section “Tab_note_heads_engraver” in Internals Reference.

Fret diagram markups

Fret diagrams can be added to music as a markup to the desired note. The markup contains
information about the desired fret diagram. There are three different fret-diagram markup
interfaces: standard, terse, and verbose. The three interfaces produce equivalent markups, but
have varying amounts of information in the markup string. Details about the markup interfaces
are found at Section B.8 [Text markup commands], page 463.

Chapter 2: Specialist notation 222

The standard fret diagram markup string indicates the string number and the fret number
for each dot to be placed on the string. In addition, open and unplayed (muted) strings can be
indicated.
<<

\context ChordNames {

\chordmode {
cl dim
}
}
\context Staff {
\clef "treble_8"
<cegc'e' >1 "\markup
\fret-diagram #"6-x;5-3;4-2;3-0;2-1;1-0;"
<dad' £f'> "\markup
\fret-diagram #"6-x;5-x;4-0;3-2;2-3;1-1;"

I

}
>>
C Dm
X o o X X0
[
[
n -
)" 4 <« P4
7\ r £} <« ~F
[Fan YA N o> O
NV &5
) S O

Barre indications can be added to the diagram from the fret-diagram markup string.
<<
\context ChordNames {
\chordmode {
fl g
}
}
\context Staff {
\clef "treble_8"
<f, cfac'f'> "\markup
\fret-diagram #"c:6-1-1;6-1;5-3;4-3;3-2;2-1;1-1;"
<g,dghbd" g'> "\markup
\fret-diagram #"c:6-1-3;6-3;5-5;4-5;3-4;2-3;1-3;"

I

>>

-n
o)

N (@
-
v/

Ooc_@§><3
o
d Boter

The size of the fret diagram, and the number of frets in the diagram can be changed in the
fret-diagram markup string.

Chapter 2: Specialist notation 223

<<
\context ChordNames {
\chordmode {
fl g
}
}
\context Staff {
\clef "treble_8"
<f, cfac'f'>1 "\markup
\fret-diagram #"s:1.5;c:6-1-1;6-1;5-3;4-3;3-2;2-1;1-1;"
<g, b,dghbg'> "\markup
\fret-diagram #"h:6;6-3;5-2;4-0;3-0;2-0;1-3;"

b
>>
F G
— 000
T Tee
[]
[X]
h Ve 0
v -
7\ {(*+ <) O
[Fan Y WK ®) S
ANV [@) o
S T 8
-©

The number of strings in a fret diagram can be changed to accomodate different instruments
such as banjos and ukeleles with the fret-diagram markup string.

<<
\context ChordNames {
\chordmode {
al
}

}
\context Staff {
%% A chord for ukelele
a'l "\markup \fret-diagram #"w:4;4-2-2;3-1-1;2-0;1-0;"

}
>>
A,
,
oJ

Fingering indications can be added, and the location of fingering labels can be controlled by
the fret-diagram markup string.

<<
\context ChordNames {
\chordmode {
cl d:m
}

Chapter 2: Specialist notation 224

}
\context Staff {
\clef "treble_8"
<cegc' e >1 "\markup
\fret-diagram #"f:1;6-x;5-3-3;4-2-2;3-0;2-1-1;1-0;"
<dad' £f'> "\markup
\fret-diagram #"f:2;6-x;5-x;4-0;3-2-2;2-3-3;1-1-1;"

>>

O
)
3

il
K

ey
)" 4 [@) S
/\ o O =
AU o O
ANV b= 4
Y < ©

Dot radius and dot position can be controlled with the fret-diagram markup string.
<<
\context ChordNames {
\chordmode {
cl d:m
}
}
\context Staff {
\clef "treble_8"
<cegc' e >1 "\markup
\fret-diagram #"d:0.35;6-x;5-3;4-2;3-0;2-1;1-0;"
<dad' £f'> "\markup
\fret-diagram #"p:0.2;6-x;5-x;4-0;3-2;2-3;1-1;"

}
>>
C Dm
X o o X X0

n O

)" 4 <« b4

£\ r £) <« ~F

[fan YA W o>, [@)
ANV =4

) S o

The fret-diagram-terse markup string omits string numbers; the string number is implied by
the presence of semicolons. There is one semicolon for each string in the diagram. The first
semicolon corresponds to the highest string number and the last semicolon corresponds to the
first string. Mute strings, open strings, and fret numbers can be indicated.
<<

\context ChordNames {

\chordmode {
cl d:m
}

Chapter 2: Specialist notation

\context Staff {
\clef "treble_8"
<cegc' e >1 "\markup
\fret-diagram-terse #"x;3;2;0;1;0;"
<dad' £'> "\markup
\fret-diagram-terse #"x;x;0;2;3;1;"

>>

C Dm

XX O

(@]
<
Py

S

©

p_—
N (@4

efeloo

LA

Barre indicators can be included in the fret-diagram-terse markup string.
<<
\context ChordNames {
\chordmode {
flg
}
}
\context Staff {
\clef "treble_8"
<f, cfac'f£'>1 "\markup
\fret-diagram-terse #"1-(;3;3;2;1;1-);"
<g,dghbad g'> "\markup
\fret-diagram-terse #"3-(;5;5;4;3;3-);"

}
>>
» iii
»
n VaS 0
)" 4 ~F >
7\ o <€) P34
[(an YA WK ®] P24
ANV [@) =
Q(S! -© O
© Koy

Fingering indications can be included in the fret-diagram-terse markup string.
<<
\context ChordNames {
\chordmode {
cl d:m
}
}
\context Staff {
\override Voice.TextScript
#' (fret-diagram-details finger-code) = #'below-string
\clef "treble_8"
<cegc' e >1 "\markup

225

Chapter 2: Specialist notation 226

\fret-diagram-terse #"x;3-3;2-2;0;1-1;0;"
<dad"' £f'> “\markup
\fret-diagram-terse #"x;x;0;2-2;3-3;1-1;"

>>
C Dm
X o o X X0
L
[
)" 4 [@] P4
A v O ©
N U [Q)
A3V Q
Qg ©- O

Other fret diagram properties must be adjusted using \override when using the fret-
diagram-terse markup.

The fret-diagram-verbose markup string is in the format of a Scheme list. Each element of
the list indicates an item to be placed on the fret diagram.

<< \context ChordNames {
\chordmode {
cl d:m

}
\context Staff {
\clef "treble_8"
<cegc' e >1 "\markup
\fret-diagram-verbose #'(
(mute 6)
(place-fret 5 3)
(place-fret 4 2)
(open 3)
(place-fret 2 1)
(open 1)
)
<dad' £f'> "\markup
\fret-diagram-verbose #'(
(mute 6)
(mute 5)
(open 4)
(place-fret 3 2)
(place-fret 2 3)
(place-fret 1 1)

>>

Chapter 2: Specialist notation

C Dm
X o o X X0
[
e
n O
)" 4 <« 24
4\ o < ~F
U Py [@)
ANIV4 24
Qg S O

227

Fingering indications and barres can be included in a fret-diagram-verbose markup string.
Unique to the fret-diagram-verbose interface is a capo indication that can be placed on the fret
diagram. The capo indication is a thick bar that covers all strings. The fret with the capo will

be the lowest fret in the fret diagram.

<<

\context ChordNames {

\chordmode {
fl gc
}
}
\context Staff {

\clef "treble_8"

\override Voice.TextScript

#' (fret-diagram-details finger-code) = #'below-string

<f, cfac'f£'> "\markup
\fret-diagram-verbose #'(

(place-fret
(place-fret
(place-fret
(place-fret
(place-fret
(place-fret

(barre 6 1 1

)

6

5
4
3
2
1
)

<g, b, dgbg'>

\fret-diagram-verbose #'(

1)
3)
3)
2)
1)
1)

“\markup

(place-fret 6 3 2)
(place-fret 5 2 1)

(open 4)
(open 3)
(open 2)

(place-fret 1 3 3)

)

< cegc'e'> "\markup

\fret-diagram-verbose #'(

(capo 3)
(mute 6)

(place-fret 4 5 1)
(place-fret 3 5 2)
(place-fret 2 5 3)

>>

Chapter 2: Specialist notation 228

000
X
| | ——
[
»
21 3
() pag O 123
)" 4 ~F <«
/\ o <€) > <«
U [@) =4 Pay
ANIV4 <« ~F =4
Qg -© :{; -©-
o

All other fret diagram properties must be adjusted using \override when using the fret-
diagram-verbose markup.

The graphical layout of a fret diagram can be customized according to user preference through
the properties of the fret-diagram-interface. Details are found at Section “fret-diagram-
interface” in Internals Reference. For a fret diagram markup, the interface properties belong to
Voice.TextScript.

Selected Snippets
Customizing markup fret diagrams

Fret diagram properties can be set through 'fret-diagram-details. For markup fret dia-
grams, overrides can be applied to the Voice.TextScript object or directly to the markup.
<<

\chords { c1 | ¢ | c | d}

\new Voice = "mel" {
\textLengthOn
% Set global properties of fret diagram
\override TextScript #'size = #'1.2
\override TextScript
#' (fret-diagram-details finger-code) = #'in-dot
\override TextScript
#' (fret-diagram-details dot-color) = #'white

%% C major for guitar, no barre, using defaults
% terse style
c'1"\markup { \fret-diagram-terse #"x;3-3;2-2;0;1-1;0;" }

%% C major for guitar, barred on third fret
% verbose style
% size 1.0
% roman fret label, finger labels below string, straight barre
c'1 " \markup {
% standard size
\override #'(size . 1.0) {
\override #'(fret-diagram-details . (
(number-type . roman-lower)
(finger-code . in-dot)
(barre-type . straight))) {
\fret-diagram-verbose #'((mute 6)
(place-fret 5 3 1)
(place-fret 4 5 2)
(place-fret 3 5 3)
(place-fret 2 5 4)
(place-fret 1 3 1)
(barre 5 1 3))

Chapter 2: Specialist notation 229

}
}
+

%% C major for guitar, barred on third fret
% verbose style
% landscape orientation, arabic numbers, M for mute string
% no barre, fret label down or left, small mute label font
c'1 " \markup {
\override #'(fret-diagram-details . (
(finger-code . below-string)
(number-type . arabic)
(label-dir . -1)
(mute-string . "M")
(orientation . landscape)
(barre-type . none)
(xo-font-magnification . 0.4)
(xo-padding . 0.3))) {
\fret-diagram-verbose #'((mute 6)

(place-fret 5 3 1)
(place-fret 4 5 2)
(place-fret 3 5 3)
(place-fret 2 5 4)
(place-fret 1 3 1)
(barre 5 1 3))
}
}

%% simple D chord
% terse style
% larger dots, centered dots, fewer frets
% label below string
d'1 " \markup {
\override #'(fret-diagram-details . (
(finger-code . below-string)
(dot-radius . 0.35)
(dot-position . 0.5)
(fret-count . 3))) {
\fret-diagram-terse #"x;x;0;2-1;3-2;2-3;"

}
}
}
>>
X 0 0 [T1]-2 XXO
T1a X [3 [1]
1@ T i T2 ?c‘)?
i e et By
[\ 11 3 123
)\I r £}
[[YA W
SV
[y o o ©- o

Chapter 2: Specialist notation 230

See also
Notation Reference: Section B.8 [Text markup commands], page 463.
Snippets: Section “Fretted strings” in Snippets.

Internals Reference: Section “fret-diagram-interface” in Internals Reference.

Predefined fret diagrams

Fret diagrams can be displayed using the FretBoards context. By default, the FretBoards
context will display fret diagrams that are stored in a lookup table:

\include "predefined-guitar-fretboards.ly"
\context FretBoards {
\chordmode {
cld

X O 0 XXO

32 1 132

The default predefined fret diagrams are contained in the file predefined-guitar-
fretboards.ly. Fret diagrams are stored based on the pitches of a chord and the
value of stringTunings that is currently in use. predefined-guitar-fretboards.ly
contains predefined fret diagrams only for guitar-tuning. Predefined fret diagrams
can be added for other instruments or other tunings by following the examples found in
predefined-guitar-fretboards.ly.

Chord pitches can be entered either as simultaneous music or using chord mode (see [Chord
mode overview|, page 255).

\include "predefined-guitar-fretboards.ly"
\context FretBoards {

\chordmode {c1}

<c' e' g'>1

}

32 1 32 1

It is common that both chord names and fret diagrams are displayed together. This is
achieved by putting a ChordNames context in parallel with a FretBoards context and giving
both contexts the same music.

\include "predefined-guitar-fretboards.ly"
mychords = \chordmode{

clfg
b

<<
\context ChordNames {
\mychords

}
\context FretBoards {

Chapter 2: Specialist notation 231

\mychords

}
>>

32 1 134211 21 3

Predefined fret diagrams are transposable, as long as a diagram for the transposed chord is
stored in the fret diagram table.

\include "predefined-guitar-fretboards.ly"
mychords = \chordmode{

clfg
b

mychordlist = {

\mychords

\transpose ¢ e { \mychords}
}

<<
\context ChordNames {
\mychordlist

}
\context FretBoards {
\mychordlist

}

>>

C F G E A B

X o O 000 [¢] 00 XO 0 X

3 T e

32 1 134211 21 3 231 123 12341

The predefined fret diagram table contains seven chords (major, minor, augmented, dimin-
ished, dominant seventh, major seventh, minor seventh) for each of 17 keys. A complete list of
the predefined fret diagrams is shown in Section B.3 [Predefined fretboard diagrams], page 441.
If there is no entry in the table for a chord, the FretBoards engraver will calculate a fret-diagram
using the automatic fret diagram functionality described in [Automatic fret diagrams|, page 237.
\include "predefined-guitar-fretboards.ly"
mychords = \chordmode{

cl c:9
}

<<
\context ChordNames {
\mychords

}
\context FretBoards {
\mychords

}
>>

Chapter 2: Specialist notation 232

c, c

32 1 ¢

Fret diagrams can be added to the fret diagram table. To add a diagram, you must specify
the chord for the diagram, the tuning to be used, and a definition for the diagram. The diagram
definition can be either a fret-diagram-terse definition string or a fret-diagram-verbose marking
list.

\include "predefined-guitar-fretboards.ly"

\storePredefinedDiagram \chordmode {c:9}
#guitar-tuning
#"x;3-2;2-1;3-3;3-4;x;"

mychords = \chordmode{
cl c:9
}

<<
\context ChordNames {
\mychords

}

\context FretBoards {
\mychords

}

>>

32 1 2134

Different fret diagrams for the same chord name can be stored using different octaves of
pitches. The different octave should be at least two octaves above or below the default octave,
because the octaves above and below the default octave are used for transposing fretboards.

\include "predefined-guitar-fretboards.ly"

\storePredefinedDiagram \chordmode {c''}
#guitar-tuning
#(offset-fret 2 (chord-shape 'bes guitar-tuning))

mychords = \chordmode{
cl c"'

¥

<<
\context ChordNames {
\mychords
}
\context FretBoards {
\mychords

}
>>

Chapter 2: Specialist notation 233
C C

X 0O 0 X
e T

32 1 12341

In addition to fret diagrams, LilyPond stores an internal list of chord shapes. The chord
shapes are fret diagrams that can be shifted along the neck to different posistions to provide
different chords. Chord shapes can be added to the internal list and then used to define prede-
fined fret diagrams. Because they can be moved to various positions on the neck, chord shapes
will normally not contain any open strings. Like fret diagrams, chord shapes can be entered as
either fret-diagram-terse strings or fret-diagram-verbose marking lists.

\include "predefined-guitar-fretboards.ly"

% add a new chord shape

\addChordShape #'powerf #guitar-tuning #"1-1;3-3;3-4;x;x;x;"
/» add some new chords based on the power chord shape

\storePredefinedDiagram \chordmode {f''}

#guitar-tuning

#(chord-shape 'powerf guitar-tuning)
\storePredefinedDiagram \chordmode {g''}

#guitar-tuning

#(offset-fret 2 (chord-shape 'powerf guitar-tuning))

mychords = \chordmode{
f1 fll g g||
}

<<
\context ChordNames {
\mychords
}
\context FretBoards {
\mychords

}
>>

F F G G

XXX (e)¢] X X X

o

134211 134 21 3134

The graphical layout of a fret diagram can be customized according to user preference through
the properties of the fret-diagram-interface. Details are found at Section “fret-diagram-
interface” in Internals Reference. For a predefined fret diagram, the interface properties belong
to FretBoards.FretBoard.

Selected Snippets
Customizing fretboard fret diagrams

Fret diagram properties can be set through 'fret-diagram-details. For FretBoard fret
diagrams, overrides are applied to the FretBoards.FretBoard object. Like Voice, FretBoards
is a bottom level context, therefore can be omitted in property overrides.

Chapter 2: Specialist notation 234

\include "predefined-guitar-fretboards.ly"
\storePredefinedDiagram \chordmode { c' }
#guitar-tuning
#"x;1-1-(;3-2;3-3;3-4;1-1-) ;"
<<
\new ChordNames {
\chordmode { c1 | ¢ | ¢ | 4}
}
\new FretBoards {
% Set global properties of fret diagram
\override FretBoards.FretBoard #'size = #'1.2
\override FretBoard
#' (fret-diagram-details finger-code) = #'in-dot
\override FretBoard
#' (fret-diagram-details dot-color) = #'white
\chordmode {
c
\once \override FretBoard #'size = #'1.0
\once \override FretBoard
#' (fret-diagram-details barre-type) = #'straight
\once \override FretBoard
#'(fret-diagram-details dot-color) = #'black
\once \override FretBoard
#' (fret-diagram-details finger-code) = #'below-string
c '
\once \override FretBoard
#' (fret-diagram-details barre-type) = #'none
\once \override FretBoard
#' (fret-diagram-details number-type)
\once \override FretBoard
#' (fret-diagram-details orientation)
\once \override FretBoard
#' (fret-diagram-details mute-string) = #"M"
\once \override FretBoard
#' (fret-diagram-details label-dir)
\once \override FretBoard
#' (fret-diagram-details dot-color) = #'black

#'arabic

#'landscape

#LEFT

Cc]
\once \override FretBoard
#' (fret-diagram-details finger-code) = #'below-string
\once \override FretBoard
#' (fret-diagram-details dot-radius) = #0.35
\once \override FretBoard
#' (fret-diagram-details dot-position) = #0.5
\once \override FretBoard
#' (fret-diagram-details fret-count) = #3

d
}
}
\new Voice {
c'tlc | c | a

}

Chapter 2: Specialist notation 235

>>

X 0 O x — XXO
[I 1]
) — on
? = HA
‘ 12341 M - 132

0

4\ r £)

[[an Y W

ANV

[y -© o -© O

Defining predefined fretboards for other instruments

Predefined fret diagrams can be added for new instruments in addition to the standards used
for guitar. This file shows how this is done by defining a new string-tuning and a few predefined
fretboards for the Venezuelan cuatro.

This file also shows how fingerings can be included in the chords used as reference points for
the chord lookup, and displayed in the fret diagram and the TabStaff, but not the music.

These fretboards are not transposable because they contain string information. This is
planned to be corrected in the future.

% add FretBoards for the Cuatro

% Note: This section could be put into a separate file
pA predefined-cuatro-fretboards.ly

% and \included into each of your compositions

cuatroTuning = #'(11 18 14 9)

dSix = { <a\4 b\1 d\3 fis\2> }
dMajor = { <a\4 d\1 d\3 fis \2> }
aMajSeven = { <a\4 cis\1 e\3 g\2> }
dMajSeven = { <a\4 c\1 d\3 fis\2> }
gMajor = { <b\4 b\1 d\3 g\2> }

\storePredefinedDiagram \dSix
#cuatroTuning
#"0;0;0;0;"
\storePredefinedDiagram \dMajor
#cuatroTuning
#"0;0;0;3-3;"
\storePredefinedDiagram \aMajSeven
#cuatroTuning
#"0;2-2;1-1;2-3;"
\storePredefinedDiagram \dMajSeven
#cuatroTuning
#"0;0;0;1-1;"
\storePredefinedDiagram \gMajor
#cuatroTuning
#"2-2;0;1-1;0;"

% end of potential include file /predefined-cuatro-fretboards.ly

#(set-global-staff-size 16)

Chapter 2: Specialist notation 236

primerosNames = \chordmode {
d:6 d a:maj7 d:maj7
g
}
primeros = {
\dSix \dMajor \aMajSeven \dMajSeven
\gMajor
}

\score {
<<
\new ChordNames {
\set chordChanges = ##t
\primerosNames

}

\new Staff {
\new Voice \with {
\remove "New_fingering_engraver"
}
\relative c'' {
\primeros
3
b

\new FretBoards {
\set stringTunings = #cuatroTuning
\override FretBoard
#' (fret-diagram-details string-count) = #'4
\override FretBoard
#' (fret-diagram-details finger-code) = #'in-dot
\primeros

3

\new TabStaff \relative c'' {
\set TabStaff.stringTunings = #cuatroTuning
\primeros

}

>>

\layout {
\context {
\Score
\override SpacingSpanner
#'base-shortest-duration = #(ly:make-moment 1 16)
X
b
\midi { }

Chapter 2: Specialist notation 237

See also

Notation Reference: [Custom tablatures|, page 220, [Automatic fret diagrams|, page 237,
[Chord mode overview|, page 255, Section B.3 [Predefined fretboard diagrams|, page 441.

Installed Files: ‘1y/predefined-guitar-fretboards.ly’, ‘ly/predefined-guitar-ninth-fretboards.1:
Snippets: Section “Fretted strings” in Snippets.

Internals Reference: Section “fret-diagram-interface” in Internals Reference.

Automatic fret diagrams

Fret diagrams can be automatically created from entered notes using the FretBoards context.

If no predefined diagram is available for the entered notes in the active stringTunings, this
context calculates strings and frets that can be used to play the notes.

<<
\context ChordNames {
\chordmode {
flg
}

}

\context FretBoards {
<f, cfac' f'>1
<g,\6 b, dgbg'>

}

\context Staff {
\clef "treble_8"
<f, cfac' f'>1
<g, b, dgbd g'>

}
>>
F G
000
>
]
V" 4 O
£\ o <€)
[[an YA WK ®) Pay
A\ V4 < >

¢ = 8

As no predefined diagrams are loaded by default, automatic calculation of fret diagrams is

the default behavior. Once default diagrams are loaded, automatic calculation can be enabled
and disabled with predefined commands:

\storePredefinedDiagram <c e g c' e'>

#guitar-tuning

Chapter 2: Specialist notation 238

#"x;3-1-(;56-2;56-3;5-4;3-1-1) ;"
<<

\context ChordNames {

\chordmode {
cl cc
}

}

\context FretBoards {
<cegc'e'>l
\predefinedFretboards0ff
<cegc'e'>
\predefinedFretboardsOn
<cegc'e'>

}

\context Staff {

\clef "treble_8"
<cegc'e'>
<cegc'e'>
<cegc'e'>

>>
X X O O X

iii 8 iii
[X] [

12341 12341
o [@) [@) [@)
A 4 O O [@)
N U o~ > >
Y PS4 PS4 PS4
%¥ ©- ©- ©-

Sometimes the fretboard calculator will be unable to find an accceptable diagram. This can
often be remedied by manually assigning a note to a string. In many cases, only one note need
be manually placed on a string; the rest of the notes will then be placed appropriately by the
FretBoards context.

Fingerings can be added to FretBoard fret diagrams.

<<
\context ChordNames {
\chordmode {
cl d:m
}

}

\context FretBoards {
<c3e2gc'-1e'>1
<da24d4'-3 £'-1>

}

\context Staff {
\clef "treble_8"
<cegce >1
<dad'f'>

}

>>

Chapter 2: Specialist notation 239
C Dm

X [Nl XX O

32 1 231
n o
"4 [@) S
7\ o O —
AU o O
ANV S
Yy < ©

The minimum fret to be used in calculating strings and frets for the FretBoard context can
be set with the minimumFret property.

<<
\context ChordNames {
\chordmode {
dli:m d:m
}

}

\context FretBoards {
<dad' f£f'>
\set FretBoards.minimumFret = #5
<dad'f'>

}

\context Staff {
\clef "treble_8"
<dad' f'>
<dad' f£f'>

}

>>

Dm Dm

X X0 X X

» » v
n - OB
)" 4 b4 b4
[[an Y W O O

ANV

Qg O O

The strings and frets for the FretBoards context depend on the stringTunings property,
which has the same meaning as in the TabStaff context. See [Custom tablatures|, page 220 for
information on the stringTunings property.

The graphical layout of a fret diagram can be customized according to user preference through
the properties of the fret-diagram-interface. Details are found at Section “fret-diagram-
interface” in Internals Reference. For a FretBoards fret diagram, the interface properties belong
to FretBoards.FretBoard.

Predefined commands
\predefinedFretboards0ff, \predefinedFretboardsOn.

See also
Notation Reference: [Custom tablatures], page 220.
Snippets: Section “Fretted strings” in Snippets.

Internals Reference: Section “fret-diagram-interface” in Internals Reference.

Chapter 2: Specialist notation 240

Right-hand fingerings

Right-hand fingerings p-i-m-a must be entered within a chord construct <> for them to be printed
in the score, even when applied to a single note.

[Note: There must be a hyphen after the note and a space before the closing >.

\clef "treble_8"

<c-\rightHandFinger #1 >4

<e-\rightHandFinger #2 >

<g-\rightHandFinger #3 >

<c-\rightHandFinger #4 >

<c,-\rightHandFinger #1 e-\rightHandFinger #2
g-\rightHandFinger #3 c-\rightHandFinger #4 >1

0 .
"4 1 I

) a O a
g

For convenience, you can abbreviate \rightHandFinger to something short, for example RH,

#(define RH rightHandFinger)

Selected Snippets
Placement of right-hand fingerings

It is possible to exercise greater control over the placement of right-hand fingerings by setting
a specific property, as demonstrated in the following example.

#(define RH rightHandFinger)

\relative c {
\clef "treble_8"

\set strokeFingerOrientations = #'(up down)
<c-\RH #1 e-\RH #2 g-\RH #3 c-\RH #4 >4

\set strokeFingerOrientations = #'(up right down)
<c-\RH #1 e-\RH #2 g-\RH #3 c-\RH #4 >4

\set strokeFingerOrientations = #'(left)
<c-\RH #1 e-\RH #2 g-\RH #3 c-\RH #4 >2
3

Fingerings, string indications, and right-hand fingerings

This example combines left-hand fingering, string indications, and right-hand fingering.

Chapter 2: Specialist notation 241

#(define RH rightHandFinger)

\relative c {
\clef "treble_8"
<c-3\5-\RH #1 >4
<e-2\4-\RH #2 >4
<g-0\3-\RH #3 >4
<c-1\2-\RH #4 >4

>
w®
IS

lo@®@
=-®

-p
Qg &

See also
Snippets: Section “Fretted strings” in Snippets.

Internals Reference: Section “StrokeFinger” in Internals Reference.

2.4.2 Guitar

Most of the notational issues associated with guitar music are covered sufficiently in the general
fretted strings section, but there are a few more worth covering here. Occasionally users want
to create songbook-type documents having only lyrics with chord indications above them. Since
Lilypond is a music typesetter, it is not recommended for documents that have no music notation
in them. A better alternative is a word processor, text editor, or, for experienced users, a
typesetter like GuitarTeX.

Indicating position and barring
This example demonstrates how to include guitar position and barring indications.

\clef "treble_8"

bl6 d g b e

\textSpannerDown

\override TextSpanner #'(bound-details left text) = #"XII "
gl6\startTextSpan
bl6 e g e b g\stopTextSpan

elé b gd

e 2 EEE _
d‘}_
Qg [@

L4 D¢/

1%
e

1A

See also
Notation Reference: [Text spanners|, page 161.

Snippets: Section “Fretted strings” in Snippets, Section “Expressive marks” in Snippets.

Chapter 2: Specialist notation 242

Indicating harmonics and dampened notes

Special note heads can be used to indicate dampened notes or harmonics. Harmonics are nor-
mally further explained with a text markup.

\relative c' {
\clef "treble_8"
\override Staff.NoteHead #'style
g8 a b c b4
\override Staff.NoteHead #'style = #'harmonic-mixed
d"\markup { \italic { \fontsize #-2 { "harm. 12" }}} <g b>1

#'cross

harm. 12
/\ y £) | | \)I)(I N
e U J X 7~ [
SRS
See also

Snippets: Section “Fretted strings” in Snippets.
Notation Reference: [Special note heads], page 26, Section B.7 [Note head styles], page 462.

2.4.3 Banjo

Banjo tablatures

LilyPond has basic support for the five-string banjo. When making tablatures for five-string
banjo, use the banjo tablature format function to get correct fret numbers for the fifth string:

\new TabStaff <<
\set TabStaff.tablatureFormat = #fret-number-tablature-format-banjo
\set TabStaff.stringTunings = #banjo-open-g-tuning
{
\stemDown
g8 d' g'\babged' |
g4 d''8\5 b' a'\2 g'\5 e'\2 d' |

gl
}
>>
T 9 0 ? ? 10—5 ?
A—C—0 2—0— 0 0—
B Y & o Py

A number of common tunings for banjo are predefined in LilyPond: banjo-c-tuning
(¢CGBD), banjo-modal-tuning (gDGCD), banjo-open-d-tuning (aDF#AD) and banjo-
open-dm-tuning (aDFAD).

These tunings may be converted to four-string banjo tunings using the four-string-banjo
function:

\set TabStaff.stringTunings = #(four-string-banjo banjo-c-tuning)

Chapter 2: Specialist notation 243

See also
Snippets: Section “Fretted strings” in Snippets.

The file ‘scm/output-1ib.scm’ contains predefined banjo tunings.

2.5 Percussion

2.5.1 Common notation for percussion

Rhythmic music is primarily used for percussion and drum notation, but it can also be used to
show the rhythms of melodies.

References for percussion
TODO add more.

e Some percussion may be notated on a rhythmic staff; this is discussed in [Showing melody
rhythms|, page 51, and [Instantiating new staves|, page 122.

e MIDI output is discussed in a separate section; please see Section 3.5.6 [Percussion in MIDI],
page 332.

See also

Notation Reference: [Showing melody rhythms|, page 51, [Instantiating new staves|, page 122.
Section 3.5.6 [Percussion in MIDI], page 332.

Snippets: Section “Percussion” in Snippets.

Basic percussion notation

Percussion notes may be entered in \drummode mode, which is similar to the standard mode
for entering notes. The simplest way to enter percussion notes is to use the \drums command,
which creates the correct context and entry mode for percussion:

\drums {
hihat4 hh bassdrum bd

X X
£ |]

This is shorthand for:

\new DrumStaff {
\drummode {
hihat4 hh bassdrum bd

}

}
[1| y £) |)(|)(
—— ——

Each piece of percussion has a full name and an abbreviated name, and both can be used
in input files. The full list of percussion note names may be found in Section B.11 [Percussion
notes|, page 501.

Chapter 2: Specialist notation 244

Note that the normal notation of pitches (such as cis4) in a DrumStaff context will cause
an error message. Percussion clefs are added automatically to a DrumStaff contex, but other
clefs may also be used.

There are a few issues concerning MIDI support for percussion instruments; for details please
see Section 3.5.6 [Percussion in MIDI], page 332.

See also

Notation Reference: Section 3.5.6 [Percussion in MIDI|, page 332, Section B.11 [Percussion
notes|, page 501.

File: ‘1y/drumpitch-init.1ly’

Snippets: Section “Percussion” in Snippets.

Drum rolls

Drum rolls are indicated with three slashes across the stem. For quarter notes or longer the
three slashes are shown explicitly, eighth notes are shown with two slashes (the beam being the
third), and drum rolls shorter than eighths have one stem slash to supplement the beams. This
is achieved with the tremolo notation, :32, as described in [Tremolo repeats|, page 106. Here is
an example of some snare rolls:

\drums {
\time 2/4
snl6 sn8 snl6 sn8 sn8:32 ~
sn8 sn8 sn4:32 ~
sn4 sn8 snl6 snl6
snd r4d

~ — 1~ i

L= S S — I I I
—_ 7 — | 1

Sticking can be indicated by placing ~"R" or “"L" after the note. The staff-padding
property may be overridden to achieve a pleasing baseline.

\drums {
\repeat unfold 2 {
Sn16 ’“"Lll Sn""RII Sn""LII Sn""LII Sn""R" sn""L" Sn""RII Sn""R"
}
}

LRLLRLRRLRLLRLRR

See also

Snippets: Section “Percussion” in Snippets.

Pitched percussion

Certain pitched percussion instruments (e.g. xylophone, vibraphone, and timpani) are written
using normal staves. This is covered in other sections of the manual.

Chapter 2: Specialist notation 245

See also
Notation Reference: Section 3.5.6 [Percussion in MIDI], page 332.

Snippets: Section “Percussion” in Snippets.

Percussion staves

A percussion part for more than one instrument typically uses a multiline staff where each
position in the staff refers to one piece of percussion. To typeset the music, the notes must be
interpreted in DrumStaff and DrumVoice context.

up = \drummode {
crashcymbal4 hihat8 halfopenhihat hh hh hh openhihat
}
down = \drummode {
bassdrum4 snare8 bd r bd snéd
}
\new DrumStaff <<
\new DrumVoice { \voiceOne \up }
\new DrumVoice { \voiceTwo \down }
>>

VA

T

The above example shows verbose polyphonic notation. The short polyphonic notation,
described in Section “I'm hearing Voices” in Learning Manual, can also be used if the voices are
instantiated by hand first. For example,

\new DrumStaff <<
\new DrumVoice = "1" { si1*2 }
\new DrumVoice = "2" { s1x2 }
\drummode {
bd4 sn4 bd4 sné
<< {
\repeat unfold 16 hhil6
FANNAH
bd4 sn4 bd4 sn4
T >>
}
>>

N _X_LLX_i_LLX_X_X_LLi_X_LL
=] Fr | r |

There are also other layout possibilities. To use these, set the property drumStyleTable in
context DrumVoice. The following variables have been predefined:

drums-style
This is the default. It typesets a typical drum kit on a five-line staff:

Chapter 2: Specialist notation 246

X
X
X

X

cb hc bd sn SS tomh tommh

_‘ .

tomml toml tomfh tomfl

The drum scheme supports six different toms. When there are fewer toms, simply
select the toms that produce the desired result. For example, to get toms on the
three middle lines you use tommh, tomml, and tomfh.

timbales-style
This typesets timbales on a two line staff:

o 4
-

L 4 Ta3

timhsshtimlsslcb

congas-style
This typesets congas on a two line staff:

0o +

—"—H @

0 +

X

o —@ L 4 Ta3

cgh cghocghmsshcglcglocglmssl

bongos-style
This typesets bongos on a two line staff:

o +

—"—H L 4

0 +

X

@ @ @ XK
boh bohobohmsshbolbolobolmssl

percussion-style

To typeset all kinds of simple percussion on one line staves:

0 +
H—x—x—x—@e e —e —r o e —x—e 0 —

tritriotrimguiguisguilcbcltambcabmarhc

Chapter 2: Specialist notation 247

Custom percussion staves
If you do not like any of the predefined lists you can define your own list at the top of your file.
#(define mydrums '(

(bassdrum default #£ -1)
(snare default #f 0)
(hihat cross #f 1)
(pedalhihat xcircle "stopped" 2)
(lowtom diamond #f 3)))

up = \drummode { hh8 hh hh hh hhp4 hhp }
down = \drummode { bd4 sn bd toml8 toml }

\new DrumStaff <<
\set DrumStaff.drumStyleTable = #(alist->hash-table mydrums)
\new DrumVoice { \voiceOne \up }
\new DrumVoice { \voiceTwo \down }

>>

Selected Snippets
FIXME: MOVE ALL THESE TO LSR! -gp
Here are some examples:
Two Woodblocks, entered with wbh (high woodblock) and wbl (low woodblock)

% These lines define the position of the woodblocks in the stave;
% if you like, you can change it or you can use special note heads
% for the woodblocks.
#(define mydrums '((hiwoodblock default #t 3)

(lowoodblock default #t -2)))

woodstaff = {
% This defines a staff with only two lines.
% It also defines the positions of the two lines.
\override Staff.StaffSymbol #'line-positions = #'(-2 3)

% This is neccessary; if not entered, the barline would be too short!
\override Staff.BarLine #'bar-size = #3

\new DrumStaff {
\set DrumStaff.drumStyleTable = #(alist->hash-table mydrums)

% with this you load your new drum style table
\woodstaff

\drummode {
\time 2/4
wbl8 wbl1l6 wbl wbh8-> wbl |

Chapter 2: Specialist notation 248

wbl8 wbl16 wbh-> ~ wbh wbll6 r8 |
}
}

= >

RRSESE

Note that in this special case the length of the barline must altered with \override
Staff.BarLine #'bar-size #number. Otherwise it would be too short. And you have also
to define the positions of the two stafflines. For more information about these delicate things
have a look at [Staff symbol|, page 128.

A tambourine, entered with ‘tamb’:
#(define mydrums '((tambourine default #t 0)))

tambustaff = {
\override Staff.StaffSymbol #'line-positions = #'(0)
\override Staff.BarLine #'bar-size = #3
\set DrumStaff.instrumentName = #"Tambourine"

}

\new DrumStaff {
\tambustaff
\set DrumStaff.drumStyleTable

#(alist->hash-table mydrums)

\drummode {
\time 6/8
tamb8. tambl6 tamb8 tamb tamb tamb |
tamb4. tamb8 tamb tamb |
% the trick with the scaled duration and the shorter rest
% is neccessary for the correct ending of the trill-span!
tamb2.*5/6 \startTrillSpan s8 \stopTrillSpan |

Tambourine

Music for Tam-Tam (entered with ‘tt’):
#(define mydrums '((tamtam default #t 0)))

tamtamstaff = {
\override Staff.StaffSymbol #'line-positions = #'(0)
\override Staff.BarLine #'bar-size = #3
\set DrumStaff.instrumentName = #"Tamtam"

¥

\new DrumStaff {
\tamtamstaff
\set DrumStaff.drumStyleTable

#(alist->hash-table mydrums)

Chapter 2: Specialist notation 249

\drummode {
tt 1 \pp \laissezVibrer
}
}

TanﬁannJ{—{}—€*:—4

pp

Two different bells, entered with ‘cb’ (cowbell) and ‘rb’ (ridebell)

#(define mydrums '((ridebell default #t 3)
(cowbell default #t -2)))

bellstaff = {
\override DrumStaff.StaffSymbol #'line-positions = #'(-2 3)
\set DrumStaff.drumStyleTable = #(alist->hash-table mydrums)
\override Staff.BarLine #'bar-size = #3
\set DrumStaff.instrumentName = #"Different Bells"

\new DrumStaff {
\bellstaff
\drummode {
\time 2/4
rb8 rb cb cbl6 rb-> ~ |
rb16 rb8 rbl6 cb8 cb |
}
+

Different Bells H'_ C&'T'_'_'ﬁj

Here an short example by maestro Stravinsky (from ‘L’histoire du Soldat’)
#(define mydrums '((bassdrum default #t 4)

(snare default #t -4)
(tambourine default #t 0)))

global = {
\time 3/8 s4.
\time 2/4 s2%2
\time 3/8 s4.
\time 2/4 s2

drumsA = {
\context DrumVoice <<
{ \global }
{ \drummode {
\autoBeamOf f

Chapter 2: Specialist notation 250

\stemDown sn8 \stemUp tamb s8 |

sn4 \stemDown sn4 |

\stemUp tamb8 \stemDown sn8 \stemUp snl6 \stemDown sn \stemUp sn8 |
\stemDown sn8 \stemUp tamb s8 |

\stemUp sn4 s8 \stemUp tamb

}
}
>>
}
drumsB = {
\drummode {
s4 bd8 s2*%2 s4 bd8 s4 bd8 s8
}
}
\layout {
indent = #40
}
\score {
\new StaffGroup <<
\new DrumStaff {
\set DrumStaff.instrumentName = \markup {
\column {
"Tambourine"
Iletll
"caisse claire s. timbre"
}
}
\set DrumStaff.drumStyleTable = #(alist->hash-table mydrums)
\drumsA
}
\new DrumStaff {
\set DrumStaff.instrumentName = #"Grosse Caisse"
\set DrumStaff.drumStyleTable = #(alist->hash-table mydrums)
\drumsB }
>>
}
Tambourine / \ A A \
A) A \ | A) A
et H 1 o —R—N 1 Lo
. . . C = v A e
caisse claire s. timbre p_ _W p_
€ €) L3 [))
Grosse Caisse H—) Z ¢ V1% }
C C x

See also

Snippets: Section “Percussion” in Snippets.

Chapter 2: Specialist notation 251

Internals Reference: Section “DrumStaff” in Internals Reference, Section “DrumVoice” in
Internals Reference.

Ghost notes

Ghost notes for drums and percussion may be created using the \parenthesize command
detailed in [Parentheses|, page 154. However, the default \drummode does not include the
Parenthesis_engraver plugin which allows this.
\new DrumStaff \with {

\consists "Parenthesis_engraver"

¥

<<

"1II { Sl }
"2" { Sl }

\context DrumVoice
\context DrumVoice
\drummode {
<<
{
hh8[hh] <hh sn> hhi6
< \parenthesize sn > hh
< \parenthesize sn > hh8 <hh sn> hh

F A\
{
bd4d r4 bd8 bd r8 bd

}

>>
}
>>

I P~ ™] [
H_L

VA

3 7]
—]
Also note that you must add chords (< > brackets) around each \parenthesize statement.

See also

Snippets: Section “Percussion” in Snippets.

2.6 Wind instruments

Moderato assai =
P S e

ILA)
11
LA
fh-
hig)
Te®
|
[
!

Flauto LII :&iji = :kf—‘*o—
J == = [—| 4 mf
P —mf f
) 4 2 . 5 |repe . ba
Flauto 11| T T T A P == :L"'. o |
= ﬁﬁ:ﬁ:‘——% ="
GrFL p = wf
<mf

This section includes some elements of music notation that arise when writing for winds.

2.6.1 Common notation for wind instruments

This section discusses some issues common to most wind instruments.

Chapter 2: Specialist notation 252

References for wind instruments

Many notation issues for wind instruments pertain to breathing and tonguing:
e Breathing can be specified by rests or [Breath marks|, page 91.
e Legato playing is indicated by [Slurs|, page 89.
e Different types of tonguings, ranging from legato to non-legato to stacatto are usually shown

by articulation marks, sometimes combined with slurs, see [Articulations and ornamenta-
tions], page 81 and Section B.10 [List of articulations], page 500.

e Flutter tonguing is usually indicated by placing a tremolo mark and a text markup on the
note. See [Tremolo repeats|, page 106.

There are also other aspects of musical notation that can apply to wind instruments:

e Many wind instruments are transposing intruments, see [Instrument transpositions],
page 17.

e The slide glissando are characteristic of the trombone, but other winds may perform keyed
or valved glissandi. See [Glissando|, page 93.

e Harmonic series glissandi, which are possible on all brass instruments but common for
French Horns, are usually written out as [Grace notes|, page 75.

e Pitch inflections at the end of a note are discussed in [Falls and doits], page 92.

e Key slaps or valve slaps are often shown by the cross style of [Special note heads], page 26.

e Woodwinds can overblow low notes to sound harmonics. These are shown by the flageolet
articulation. See Section B.10 [List of articulations], page 500.

e The use of brass mutes is usually indicated by a text markup, but where there are many
rapid changes it is better to use the stopped and open articulations. See [Articulations and
ornamentations|, page 81 and Section B.10 [List of articulations], page 500.

e Stopped horns are indicated by the stopped articulation. See [Articulations and ornamen-
tations|, page 81.

Selected Snippets

Changing \flageolet mark size

To make the \flageolet circle smaller use the following Scheme function.
smallFlageolet =
#(let ((m (make-music 'ArticulationEvent

'articulation-type "flageolet")))
(ly:music-set-property! m 'tweaks
(acons 'font-size -3
(ly:music-property m 'tweaks)))
m)

\layout { ragged-right = ##f }
\relative c'' {

d4~\flageolet_\markup { default size } d_\flageolet
c4"\smallFlageolet_\markup { smaller } c_\smallFlageolet

}
() o o
GE= * I
v Idefault size © | o

smaller

Chapter 2: Specialist notation 253

See also

Notation Reference: [Breath marks|, page 91, [Slurs], page 89, [Articulations and ornamen-
tations|, page 81, Section B.10 [List of articulations], page 500, [Tremolo repeats]|, page 106,
[Instrument transpositions], page 17, [Glissando], page 93, [Grace notes|, page 75, [Falls and
doits|, page 92, [Special note heads], page 26,

Snippets: Section “Winds” in Snippets

Fingerings
All wind instruments other than the trombone require the use of several fingers to produce each
pitch.

TBC

2.6.2 Bagpipes

This section includes extra information for writing for bagpipes.

Bagpipe definitions

LilyPond contains special definitions for music for the Scottish highland bagpipe; to use them,
add

\include "bagpipe.ly"

at the top of your input file. This lets you add the special grace notes common to bagpipe music
with short commands. For example, you could write \taor instead of

\grace { \small G32[d G e] }

bagpipe.ly also contains pitch definitions for the bagpipe notes in the appropriate octaves,
so you do not need to worry about \relative or \transpose.

\include "bagpipe.ly"
{ \grg G4 \grg a \grg b \grg c \grg d \grg e \grg f \grA g A }

SEEREIRAY

U [[| | !

Bagpipe music nominally uses the key of D Major (even though that isn’t really true).
However, since that is the only key that can be used, the key signature is normally not written
out. To set this up correctly, always start your music with \hideKeySignature. If you for some
reason want to show the key signature, you can use \showKeySignature instead.

Some modern music use cross fingering on ¢ and f to flatten those notes. This can be indicated
by cflat or fflat. Similarly, the piobaireachd high g can be written gflat when it occurs in
light music.

See also
Section “Winds” in Snippets

Bagpipe example
This is what the well known tune Amagzing Grace looks like in bagpipe notation.
\include "bagpipe.ly"
\layout {
indent = 0.0\cm
\context { \Score \remove "Bar_number_engraver" }

Chapter 2: Specialist notation

}

\header {
title = "Amazing Grace"
meter = "Hymn"
arranger = "Trad. arr."

}

{
\hideKeySignature
\time 3/4
\grg \partial 4 a8. d16
\slurd d2 \grg f8[e32 d16.]
\grg f2 \grg £8 e
\thrwd d2 \grg b4
\grG a2 \grg a8. di6
\slurd d2 \grg £8[e32 di16.]
\grg f2 \grg e8. f16
\dblA A2 \grg A4
\grg A2 £f8. A16
\grg A2 \hdblf £8[e32 d16.]
\grg 2 \grg 8 e
\thrwd d2 \grg b4
\grG a2 \grg a8. 416
\slurd d2 \grg £8[e32 d16.]
\grg 2 e4
\thrwd d2.
\slurd d2
\bar "|."

Amazing Grace

Trad. arr.

[W

0 S ~ 2 F
b ST |

U | " —

o ﬁs- o P ﬁqs- E ﬁ, ﬁ; . ;EEﬂ ﬁ
%? { e i r

254

Chapter 2: Specialist notation 255

N . S R T

/4

)" 4 Py . = o 0 | |
B P CUF — - |
- | |
U | ™ —
See also
Section “Winds” in Snippets
2.7 Chord notation
F C F F C F F Bb F c F C

h | A | | | 4 | | |
e S== |
Jg— 2 95582 = -
1. Fair is the sun -shine, Fair - er the moon - light And allthe stars_inheav'n a - bove;
2. Fair arethe mead - ows, Fair - er the wood -1land, Robed in the flowers of blooming spring;
> o o r. i o .I'. = o - » h=a - -

e e io g -

|
i T
} L

| r | |

Eg
%

\\

O

Chords can be entered either as normal notes or in chord mode and displayed using a variety
of traditional European chord naming conventions. Chord names and figured bass notation can
also be displayed.

2.7.1 Chord mode

Chord mode is used to enter chords using an indicator of the chord structure, rather than the
chord pitches.

Chord mode overview
Chords can be entered as simultaneous music, as discussed in [Chorded notes], page 108.

Chords can also be entered in “chord mode”, which is an input mode that focuses on the
structures of chords in traditional European music, rather than on specific pitches. This is con-
venient for those who are familiar with using chord names to describe chords. More information
on different input modes can be found at Section 5.4.1 [Input modes|, page 392.

\chordmode { c1 g a g c }

)’ 4 O iY@) O
4\ r) &> X Q) P24
[fan YA O 24 TO 24 O
ANV 24 ~F ~F)24
[y, ©- -

Chords entered using chord mode are music elements, and can be transposed just like chords
entered using simultaneous music.

Chord mode and note mode can be mixed in sequential music:

<c e g>2 <g b d>
\chordmode { c2 f }
<c e g>2 <g' b d>
\chordmode { f2 g }

DN

TR
\
i

d
o
||
||

Chapter 2: Specialist notation 256

See also
Music Glossary: Section “chord” in Music Glossary.
Notation Reference: [Chorded notes], page 108, Section 5.4.1 [Input modes], page 392.
Snippets: Section “Chords” in Snippets

Known issues and warnings
When chord mode and note mode are mixed in sequential music, and chord mode comes first,
the note mode will create a new Staff context.

\chordmode { c2 f }
<c e g>2 <g' b d>

p_—
N (@4

G

B>
«

To avoid this behavior, explicitly create the Staff context:
\new Staff {

\chordmode { c2 f }

<c e g>2 <g' b d>

}
Q
4\ £} [
[fan Y W
ANV [,
[Y)

Common chords

Major triads are entered by including the root and an optional duration:
\chordmode { c2 f4 g }

() |

=

Minor, augmented, and diminished triads are entered by placing : and a quality modifier
string after the duration:

\chordmode { c2:m f4:aug g:dim }

() | 4

St

Seventh chords can be created:
\chordmode { c1:7 c:m7 c:maj7 c:dim7 c:aug7 }

"4 I I o] 1
A b b b b
e U P P’ SYILuid - A
NIV b ’h #
e © ©- © ©- -©-

Chapter 2: Specialist notation 257

The table belows shows the actions of the quality modifiers on triads and seventh chords. The
default seventh step added to chords is a minor or flatted seventh, which makes the dominant
seventh the basic seventh chord. All alterations are relative to the dominant seventh. A more
complete table of modifier usage is found at Section B.2 [Common chord modifiers|, page 438.

Modifier Action Example
None The default action; produces a ma-
jor triad. 0
pat
©&—g—
J o
m, m7 The minor chord. This modifier
lowers the 3rd. o)
X b
A\ 1 o [
NV he&s b
¢ "o V-
dim, dim7 The diminished chord. This mod-
ifier lowers the 3rd, 5th and (if Q -
present) the 7th step. y AV — b
NVhV &8 Vh
J'V o <
aug The augmented chord. This modi-

fier raises the 5th step.

maj, maj7 The major 7th chord. This modi-
fier adds a raised Tth step. The 7
following maj is optional. Do NOT
use this modifier to create a major
triad.

3

N

See also

Notation Reference: Section B.2 [Common chord modifiers], page 438, [Extended and altered
chords|, page 257.

Snippets: Section “Chords” in Snippets.

Known issues and warnings

Only one quality modifier should be used per chord, typically on the highest step present in the
chord. Chords with more than quality modifier will be parsed without an error or warning, but
the results are unpredictable. Chords that cannot be achieved with a single quality modifier
should be altered by individual pitches, as described in [Extended and altered chords], page 257.

Extended and altered chords

Chord structures of arbitrary complexity can be created in chord mode. The modifier string
can be used to extend a chord, add or remove chord steps, raise or lower chord steps, and add
a bass note or create an inversion.

Chapter 2: Specialist notation 258

The first number following the : is taken to be the extent of the chord. The chord is
constructed by sequentially adding thirds to the root until the specified number has been reached.
Note that the seventh step added as part of an extended chord will be the minor or flatted
seventh, not the major seventh. If the extent is not a third (e.g., 6), thirds are added up to the
highest third below the extent, and then the step of the extent is added. The largest possible
value for the extent is 13. Any larger value is interpreted as 13.

\chordmode {
cl:2 c:3 c:4 c:5
cl:6 c:7 c:8 c:9
cl1:10 c:11 c:12 c:13

cl:14

)" 4 1 1 e

y A -) b 2= @) b

s U Py P @) v e S P&

\N\3V = P~ o) Q =4 s

e) o5 pss - O - © © ©
9N . o o o

" A > I I T T

A & b S b b b

[[an L2 V 2 Vo v v

S K s s

e © - - - -

Note that both c:5 and ¢ produce a C major triad.

Since an unaltered 11 does not sound good when combined with an unaltered 13, the 11 is
removed from a :13 chord (unless it is added explicitly).

\chordmode {
cl:13 ¢:13.11 ¢c:m13

[© - -©
74 T e S 1
A b b b
s UPS D& L4
A3 s s b
e) O O Y

Individual steps can be added to a chord. Additions follow the extent and are prefixed by a
dot (.). The basic seventh step added to a chord is the minor or flatted seventh, rather than
the major seventh.

\chordmode {
cl:5.6 ¢:3.7.8 ¢c:3.6.13

0 ©
)" 4]
7\ r) b P
[Fan YA Par @] | O
ANV =4 O O
[y ©- - RS

Added steps can be as high as desired.

\chordmode {
c4:5.15 ¢:5.20 ¢:5.25 ¢:5.30

Chapter 2: Specialist notation 259

"

e
RLLLLLLL,

>
[}

r)

:

Added chord steps can be altered by suffixing a - or + sign to the number. To alter a step
that is automatically included as part of the basic chord structure, add it as an altered step.

\chordmode {
cl:7+ ¢c:5+.3- ¢:3-.5-.7-

Y/ T

A v o " —hb

[{an Vi] [P YRS
D s 73 S 4 Ph

[Y) © TS TS

Following any steps to be added, a series of steps to be removed is introduced in a modifier
string with a prefix of ~. If more than one step is to be removed, the steps to be removed are
separated by . following the initial .

\chordmode {
cl™3 ¢:7°5 ¢:973 ¢:973.5 ¢:13.1173.7

() <
)" 4 1 [P [P 4
/\ y £) b ey hes hes ~F
AU Py L V &S L Py
_\} -y Py -y o«
[Y) o ©- o o -©

The modifier sus can be added to the modifier string to create suspended chords. This
removes the 3rd step from the chord. Append either 2 or 4 to add the 2nd or 4th step to the
chord. sus is equivalent to ~3; sus4 is equivalent to .473.

\chordmode {
cl:sus c:sus2 c:sus4 c:5.473

}
o
/\ r)
NN U o~ O Pa N PaY
A\ ~F ~F [@ 2= [@ s
eJ © 4 o ©

Inversions (putting a pitch other than the root on the bottom of the chord) and added bass
notes can be specified by appending /pitch to the chord.

\chordmode {

cl c/g c/f
}
o)
A—
(S E— - S 34
[y, ©- © ©
o =

A bass note that is part of the chord can be added, instead of moved as part of an inversion,
by using /+pitch.

Chapter 2: Specialist notation 260

\chordmode {

cl c/g c/+g
}

o)

X

AN U o~ Pay

P S P=Y S

[y -©- R -
O O

Chord modifiers that can be used to produce a variety of standard chords are shown in
Section B.2 [Common chord modifiers], page 438.

See also
Notation Reference: Section B.2 [Common chord modifiers], page 438.

Snippets: Section “Chords” in Snippets

Known issues and warnings
Each step can only be present in a chord once. The following simply produces the augmented
chord, since 5+ is interpreted last.
\chordmode { c1:5.5-.5+ }
o)

)’ 4
Only the second inversion can be created by adding a bass note. The first inversion requires

changing the root of the chord.

\chordmode {
c'l: ¢c':/g e:6-3-"5 e:m6-"5

n «Q

)" 4 4))

/\ (o O O O O
U O O O
A\ ~F 24 24
U © ©

2.7.2 Displaying chords

Chords can be displayed by name, in addition to the standard display as notes on a staff.

Printing chord names

Chord names are printed in the ChordNames context:

\new ChordNames {
\chordmode {
c2 f4. g8
}
}

C F G

Chords can be entered as simultaneous notes or through the use of chord mode. The displayed
chord name will be the same, regardless of the mode of entry, unless there are inversions or added
bass notes:

Chapter 2: Specialist notation

<<

>>

\new ChordNames {

-

<c e g>2 <f bes c>
<f c' e g>1
\chordmode {

c2 f:sus4 cl:/f
}

<c e g>2 <f bes c>
<f, c' e g>1
\chordmode {

c2 f:susd cil:/f

}
}
C I:sus4 FA/Q C Fsus4 C/E
()
A C—> — b —
ANV, [b4 7 =4
Y S ©
= =

\chords { ... } is a shortcut notation for \new ChordNames { \chordmode { ... } }.

\chords {
c2 f4.:m g8:maj7

}

C

Fm GA

\new ChordNames {
\chordmode {

c2 f4.:m g8:maj7

Selected Snippets

Showing chords at changes

Chord names can be displayed only at the start of lines and when the chord changes.

harmonies = \chordmode {

}

<<

cl:m c:m \break c:m c:m d

\new ChordNames {

}

\set chordChanges = ##t
\harmonies

261

Chapter 2: Specialist notation 262

\new Staff {
\relative c' { \harmonies }

}

>>
Cm

o)

)’ 4

7\ r)

N Ul o l

ANV b &y b &y

JJ - -

Cm D

3 0

)’ 4

4\

A 1 o | X @]

NV bhes b &y I Q)

o8 g 18

Simple lead sheet
When put together, chord names, a melody, and lyrics form a lead sheet:

<<
\chords { c2 g:sus4 f e }
\relative c'' {
a4 e c8 e r4d

b2 c4(d)
}
\addlyrics { One day this shall be free __ }
>>
C G** F E
o) |
- — —_ .
B (. s m— = —
Oneday thisshall be free_
See also

Music Glossary: Section “chord” in Music Glossary.
Notation Reference: [Writing music in parallel], page 119.
Snippets: Section “Chords” in Snippets

Internals Reference: Section “ChordNames” in Internals Reference, Section “ChordName”
in Internals Reference, Section “Chord_name_engraver” in Internals Reference, Section
“Volta_engraver” in Internals Reference, Section “Bar_engraver” in Internals Reference.

Known issues and warnings

Chords containing inversions or altered bass notes are not named properly if entered using
simultaneous music.

Chapter 2: Specialist notation 263

Customizing chord names

There is no unique system for naming chords. Different musical traditions use different names
for the same set of chords. There are also different symbols displayed for a given chord name.
The names and symbols displayed for chord names are customizable.

The basic chord name layout is a system for Jazz music, proposed by Klaus Ignatzek (see
Appendix A [Literature list], page 436). The chord naming system can be modified as described
below. An alternate jazz chord system has been developed using these modifications. The
Ignatzek and alternate Jazz notation are shown on the chart in Section B.1 [Chord name chart],
page 437.

In addition to the different naming systems, different note names are used for the root

in different languages. = The predefined variables \germanChords, \semiGermanChords,
\italianChords and \frenchChords set these variables. The effect is demonstrated here:
default E/D Cm B/B B#/B# Bb/Bb
german E/d Cm H/h H#/his B/b
semi-german E/d Cm H/h H#/ his Bb/ b
italian Mi/Re Dom Si/Si Si#/Si#sibssib
french Mi/Ré Dom Si/Si Si#i/Si#sibssib
0 g 5Q g
o —TO° S p— #U -

If none of the existing settings give the desired output, the chord name display can be tuned
through the following properties.

chordRootNamer
The chord name is usually printed as a letter for the root with an optional alteration.
The transformation from pitch to letter is done by this function. Special note names
(for example, the German ‘H’ for a B-chord) can be produced by storing a new
function in this property.

majorSevenSymbol
This property contains the markup object used to follow the output of
chordRootNamer to identify a major 7 chord. Predefined options are

whiteTriangleMarkup and blackTriangleMarkup.

chordNoteNamer
When the chord name contains additional pitches other than the root (e.g., an added
bass note), this function is used to print the additional pitch. By default the pitch
is printed using chordRootNamer. The chordNoteNamer property can be set to a
specialized function to change this behavior. For example, the bass note can be
printed in lower case.

chordNameSeparator
Different parts of a chord name are normally separated by a slash. By setting
chordNameSeparator, you can use any desired markup for a separator.

chordNameExceptions
This property is a list of pairs. The first item in each pair is a set of pitches used
to identify the steps present in the chord. The second item is a markup that will
follow the chordRootNamer output to create the chord name.

Chapter 2: Specialist notation 264

chordPrefixSpacer
The ‘m’ for minor chords is usually printed immediately to the right of the root
of the chord. A spacer can be placed between the root and ‘m’ by setting
chordPrefixSpacer. The spacer is not used when the root is altered.

Predefined commands

\whiteTriangleMarkup, \blackTriangleMarkup, \germanChords, \semiGermanChords,
\italianChords, \frenchChords.

Selected Snippets

Chord name exceptions

The property chordNameExceptions can be used to store a list of special notations for specific
chords.

% modify maj9 and 6(add9)
% Exception music is chords with markups
chExceptionMusic = {

<c e g b d'>1-\markup { \super "majo" }

<c e g a d'>1-\markup { \super "6(add9)" }
}

% Convert music to list and prepend to existing exceptions.
chExceptions = #(append
(sequential-music-to-chord-exceptions chExceptionMusic #t)
ignatzekExceptions)

theMusic = \chordmode {
gl:maj9 gl:6.9
\set chordNameExceptions = #chExceptions
gl:maj9 g1:6.9

3

\layout {
ragged-right = ##t
b

<< \context ChordNames \theMusic
\context Voice \theMusic
>>

GA/g G6/add9 Gmaj9 G6(add9)
[e © e -
KX —7€ o i S o
(oo o 3 S $ S
oJ

chord name magjor7
The layout of the major 7 can be tuned with majorSevenSymbol

\chords {
c:7+
\set majorSevenSymbol = \markup { j7 }

Chapter 2: Specialist notation 265

c:7+

A\ A7
c—c
Adding bar lines to ChordNames context
To add bar line indications in the ChordNames context, add the Bar_engraver.
\new ChordNames \with {

\override BarLine #'bar-size = #4
\consists "Bar_engraver"

}

\chordmode {
fl:maj7 £:7 bes:7

}
]
Volta below chords
By adding the Volta_engraver to the relevant staff, volte can be put under chords.
\score {
<<
\chords {
cl
cl
}
\new Staff \with {
\consists "Volta_engraver"
}
{
\repeat volta 2 { c'1l }
\alternative { c' }
}
>>
\layout {
\context {
\Score
\remove "Volta_engraver"
}
}
}
C C
N 1-2.
e C
ANV
¢ o ©

Changing chord separator

The separator between different parts of a chord name can be set to any markup.

Chapter 2: Specialist notation 266

\chords {
c:7sus4
\set chordNameSeparator
= \markup { \typewriter | }
c:7sus4

7/susd ~7|sus4
csust I

See also

Notation Reference: Section B.1 [Chord name chart], page 437, Section B.2 [Common chord
modifiers|, page 438.

Installed Files: ‘scm/chords-ignatzek.scm’, ‘scm/chord-entry.scm’, ‘1y/chord-modifier
-init.1ly’.
Snippets: Section “Chords” in Snippets.

Known issues and warnings

Chord names are determined from both the pitches that are present in the chord and the infor-
mation on the chord structure that may have been entered in \chordmode. If the simultaneous
pitches method of entering chords is used, undesired names result from inversions or bass notes.

myChords = \relative c' {
\chordmode { cl c/g c/f }
<ceg>l <gce><fc'eg>

}

<<
\new ChordNames { \myChords }
\new Staff { \myChords }

>>
6 4 9
C CG CF C GYsustpty
n
)" 4
ANV a4 Py a4 a4 Py a4
e ©- -©- -©- © -©- -©-

2.7.3 Figured bass

Adagio.
g T _ obe o ~
Violino I. :ﬁﬁﬁi?—p’%ﬁm:ﬁzwg_*f—ﬁ‘ —— R i - 5 ! L=|
0 . | s pl® » p——T 1
i / M T3 ' = o~ &4
Violino IL. (| i EF N o4 et s P
[J) ——
—_ 1

Violone, | G e fre £ rhe.

e Cembalo. N P 1:___9‘____i i ———] r :

6 # 6 6 ¢ 5 5 6

[

+
=
[S)=r}

Chapter 2: Specialist notation 267

Figured bass notation can be displayed.

Introduction to figured bass

LilyPond has support for figured bass, also called thorough bass or basso continuo:

<<
\new Voice { \clef bass dis4 c d ais g fis}
\new FiguredBass {
\figuremode {
<6 > < T7\+>8 <6+ [_!] >
<6 >4 <65 [3+] >
< _ >4 <6 5/>4

}
}
>>
[T — #f o —
=il — '
6 +746 6 6 6
[h] 5 151
[£3]

The support for figured bass consists of two parts: there is an input mode, introduced by
\figuremode, that accepts entry of bass figures, and there is a context named FiguredBass
that takes care of displaying BassFigure objects. Figured bass can also be displayed in Staff
contexts.

\figures{ ... } is a shortcut notation for \new FiguredBass { \figuremode { ... } }.

Although the support for figured bass may superficially resemble chord support, it is much
simpler. \figuremode mode simply stores the figures and the FiguredBass context prints them
as entered. There is no conversion to pitches.

See also
Music Glossary: Section “figured bass” in Music Glossary.

Snippets: Section “Chords” in Snippets

Entering figured bass

\figuremode is used to switch the input mode to figure mode. More information on different
input modes can be found at Section 5.4.1 [Input modes], page 392.

In figure mode, a group of bass figures is delimited by < and >. The duration is entered after
the >.

\new FiguredBass {
\figuremode {

Chapter 2: Specialist notation 268

<6 4>2

6
4
Accidentals (including naturals) can be added to figures:

\figures {
<7! 6+ 4-> <5++> <3-->
}

W7 %5 %3
6
b4

Augmented and diminished steps can be indicated:

\figures {
<6\+ 5/> <7/>
}

6 7
7

A backward slash through a figure (typically used for raised sixth steps) can be created:

\figures {
<6> <6\\>
}

6 6

Vertical spaces and brackets can be be included in figures:
\figures {

<[12 _!']1 8 [6 4]>
}

iy

i
Any text markup can be inserted as a figure:

\figures {
<\markup { \tiny \number 6 \super (1) } 5>
}

g
5

Continuation lines can be used to indicate repeated figures:

Chapter 2: Specialist notation

<<

{

\clef bass
ed d c b,
ed d c b,

}

\figures {
\bassFigureExtendersOn
<6 4>4 <6 3> <7 3> <7 3>
\bassFigureExtenders0ff
<6 4>4 <6 3> <7 3> <7 3>

6— 7— 6 6
43— 4 3

269

In this case, the extender lines replace existing figures, unless the continuation lines have been

explicitly terminated.

<<
\figures {
\bassFigureExtendersOn
<6 4>4 <6 4> <6\! 4\!> <6 4>

}
{
\clef bass
dd d cc
}
>>
6— 6—
4— 4—
5\: - I

The table below summarizes the figure modifiers available.

Modifier = Purpose Example

+, -, | Accidentals

b7 %5 %3
46
b A4

Chapter 2: Specialist notation 270

\+, / Augmented and diminished steps
+6 ¥
]
\\ Raised sixth step
6
\! End of continuation line
6— 6—
4— 4—
6)" I
S
. | |

Predefined commands

\bassFigureExtendersOn, \bassFigureExtenders0ff.

Selected Snippets
Changing the positions of figured bass alterations

Accidentals and plus signs can appear before or after the numbers, depending on the
figuredBassAlterationDirection and figuredBassPlusDirection properties.
\figures {

<B6\+> <5+> <6 4-> T

\set figuredBassAlterationDirection = #RIGHT

<B\+> <5+> <6 4-> T

\set figuredBassPlusDirection = #RIGHT

<B\+> <5+> <6 4-> r

\set figuredBassAlterationDirection = #LEFT

<B\+> <5+> <6 4-> T

+6 #5 6 +6 54 6 6+ 5% 6 6+45 6
b4 4 4 4

See also
Snippets: Section “Chords” in Snippets.

Internals Reference: Section “BassFigure” in Internals Reference, Section “BassFigureAlign-
ment” in Internals Reference, Section “BassFigureLine” in Internals Reference, Section “Bass-
FigureBracket” in Internals Reference, Section “BassFigureContinuation” in Internals Refer-
ence, Section “FiguredBass” in Internals Reference.

Displaying figured bass

Figured bass can be displayed using the FiguredBass context, or in most staff contexts.

When displayed in a FiguredBass context, the vertical location of the figures is independent
of the notes on the staff.

Chapter 2: Specialist notation 271

<<
\relative c'' {
c4d ¢c'8 r8 c,4 c'
}
\new FiguredBass {
\figuremode {
<4>4 <10 6>8 s8
<6 4>4 <6 4>

}
}
>>
- -
0 5 7
, Y
ANV | |
U | |
4 10 6 6
6 4 4

In the example above, the FiguredBass context must be explicitly instantiated to avoid creating
a second (empty) staff.

Figured bass can also be added to Staff contexts directly. In this case, the vertical position
of the figures is adjusted automatically.

<<
\new Staff = myStaff
\figuremode {
<4>4 <10 6>8 s8
<6 4>4 <6 4>
}
%% Put notes on same Staff as figures
\context Staff = myStaff

{
\clef bass
c4d ¢c'8 r8 c4 c'
}
>>
10 ¢ 6
6 4
4 o 4 o
6))]
77— vi

When added in a Staff context, figured bass can be displayed above or below the staff.

<<

\new Staff = myStaff

\figuremode {
<4>4 <10 6>8 s8
\bassFigureStaffAlignmentDown
<6 4>4 <6 4>

}

%% Put notes on same Staff as figures

\context Staff = myStaff

Chapter 2: Specialist notation 272

{
\clef bass
c4d ¢c'8 r8 c4 c'
}
>>
%?
4 - -
6))
il D L) &
/ Vi
6 6
4 4

Predefined commands

\bassFigureStaffAlignmentDown, \bassFigureStaffAlignmentUp,
\bassFigureStaffAlignmentNeutral.

See also

Snippets: Section “Chords” in Snippets.

Internals Reference: Section “BassFigure” in Internals Reference, Section “BassFigureAlign-
ment” in Internals Reference, Section “BassFigureLine” in Internals Reference, Section “Bass-
FigureBracket” in Internals Reference, Section “BassFigureContinuation” in Internals Refer-
ence, Section “FiguredBass” in Internals Reference.

Known issues and warnings

To ensure that continuation lines work properly, it is safest to use the same rhythm in the figure
line as in the bass line.

<<
{
\clef bass
\repeat unfold 4 { f16. g32 } £8. esl6 d8 es
}
\figures {
\bassFigureExtendersOn
% The extenders are correct here, with the same rhythm as the bass
\repeat unfold 4 { <6 4->16. <6 4->32 }
<6>8. ri16 <6>8 <6\! 5->
b
>>
<<
{
\clef bass
\repeat unfold 4 { f16. g32 } f8. esl1l6 d8 es
}
\figures {
\bassFigureExtendersOn
% The extenders are incorrect here, even though the timing is the same
<6 4->4 <6 4->4
<6>8. ri16 <6>8 <6\! 5->
b

>>

Chapter 2: Specialist notation 273

). @ P e P g @ g O g
rd \ W
[[
6 53 6 6
b4 bd
2
—‘):—"—-—"—'—"—'—"—'— D
7
[[
6 53 6 6
b4 bd

When using extender lines, adjacent figures with the same number in a different figure location
can cause the figure positions to invert.

<<
{ fisd g g, e' %}
\figures {
\bassFigureExtendersOn
<6 5>4 <B\! 4> < 5 _I> <6>
b
>>

>

To avoid this problem, simply turn on extenders after the figure that begins the extender
line and turn them off at the end of the extender line.

<<
{fisd g g, e' }
\figures {
<6 5>4 <5 4>
\bassFigureExtendersOn
< 5 _1>4 <6>
\bassFigureExtenders0ff
b

>>

Chapter 2: Specialist notation 274

2.8 Ancient notation

] | |
1] e Y ! a
——) e i pra— f [T— fa] (] f Co|
o a {H A - i [— [~ |~ -
L] rl n ! L] !

Sal- ve,Re-gi- na, ma-ter mi- se-ri- cér-di- ae: Ad te cla- ma- mus, éx- su- les, fi-li- i He-vae. Ad te su- spi-

[~ | i 3] i | —)
w — ¥ . P o

H | Pa— : I] |
. N i .

]
y
.

ra- mus, ge- mén-tes et flen- tesinhac la- cri- ma-rumval- le. E-iaer-go, Ad- vo-ca- tano-stra,il-

T

i
- — . i .] i] . L
- L] LT : - 1 N — e f

i -

lostu- osmi- se-ri-cér- des 6- cu-los ad nos con- vér-te. EtdJe-sum, be-ne-dic-tum fruc-tum ven- tris

Sa

"

g .
L

‘ .
! ! IT o IT
N L] I jo_nlAC) I
M o] [a] 11 I N

fa *

- |
.
" JII

tu-i, no- bis post hoc ex- si- li-um os-tén-de. O cle-mens: O pi-a: O dul-cisVir-goMa-ri- a.

Support for ancient notation includes features for mensural notation and Gregorian chant
notation. These features can be accessed either by modifying style properties of graphical
objects such as note heads and rests, or by using one of the pre-defined contexts for mensural
or Gregorian notation.

Many graphical objects, such as note heads and flags, accidentals, time signatures, and rests,
provide a style property, which can be changed to emulate several different styles of ancient
notation. See

e [Mensural note heads], page 280,
e [Mensural accidentals and key signatures|, page 281,

Mensural rests|, page 281,

Gregorian clefs|, page 285,

[
[

e [Mensural clefs], page 278,
[
[Mensural flags|, page 280,
[

e [Mensural time signatures], page 279.

Some notational concepts are introduced specifically for ancient notation,
e [Custodes|, page 276,
e [Divisiones|, page 286,
o [Ligatures|, page 275.

2.8.1 Overview of the supported styles

Three styles are available for typesetting Gregorian chant:

e FEditio Vaticana is a complete style for Gregorian chant, following the appearance of the
Solesmes editions, the official chant books of the Vatican since 1904. Lilypond has support
for all the notational signs used in this style, including ligatures, custodes, and special signs
such as the quilisma and the oriscus.

e The Editio Medicaea style offers certain features used in the Medicaea (or Ratisbona) edi-
tions which were used prior to the Solesmes editions. The most significant differences from
the Vaticana style are the clefs, which have downward-slanted strokes, and the noteheads,
which are square and regular.

Chapter 2: Specialist notation 275

e The Hufnagel (“horseshoe nail”) or Gothic style mimics the writing style in chant manu-
scripts from Germany and Central Europe during the middle ages. It is named after the
basic note shape (the virga), which looks like a small nail.

Three styles emulate the appearance of late-medieval and renaissance manuscripts and prints
of mensural music:

e The Mensural style most closely resembles the writing style used in late-medieval and early
renaissance manuscripts, with its small and narrow, diamond-shaped noteheads and its rests
which approach a hand-drawn style.

e The Neomensural style is a modernized and stylized version of the former: the noteheads
are broader and the rests are made up of straight lines. This style is particularly suited,
e.g., for incipits of transcribed pieces of mensural music.

o The Petrucci style is named after Ottaviano Petrucci (1466-1539), the first printer to use
movable type for music (in his Harmonice musices odhecaton, 1501). The style uses larger
note heads than the other mensural styles.

Baroque and Classical are not complete styles but differ from the default style only in some
details: certain noteheads (Baroque) and the quarter rest (Classical).

Only the mensural style has alternatives for all aspects of the notation. Thus, there are no
rests or flags in the Gregorian styles, since these signs are not used in plainchant notation, and
the Petrucci style has no flags or accidentals of its own.

Each element of the notation can be changed independently of the others, so that one can
use mensural flags, petrucci noteheads, classical rests and vaticana clefs in the same piece, if one
wishes.

2.8.2 Ancient notation—common features

Pre-defined contexts

For Gregorian chant and mensural notation, there are pre-defined voice and staff contexts avail-
able, which set all the various notation signs to values suitable for these styles. If one is satis-
fied with these defaults, one can proceed directly with note entry without worrying about the
details on how to customize a context. See one of the pre-defined contexts VaticanaVoice,
VaticanaStaff, MensuralVoice, and MensuralStaff. See further

e [Gregorian chant contexts], page 284,

e [Mensural contexts], page 277.

Ligatures

A ligature is a graphical symbol that represents at least two distinct notes. Ligatures originally
appeared in the manuscripts of Gregorian chant notation to denote ascending or descending
sequences of notes on the same syllable. They are also used in mensural notation.

Ligatures are entered by enclosing them in \[and \]. Some ligature styles may need addi-
tional input syntax specific for this particular type of ligature. By default, the Section “Liga-
tureBracket” in Internals Reference engraver just puts a square bracket above the ligature.

\transpose c c' {
\[gcafd \]
agt
\[efag)\l]

}

Chapter 2: Specialist notation 276

n 1 1
15 C o Ers=mm= e
e - '

Two other ligature styles are available: the Vaticana for Gregorian chant, and the Mensural
for mensural music (only white mensural ligatures are supported for mensural music, and with
certain limitations). To use any of these styles, the default Ligature_bracket_engraver has
to be replaced with one of the specialized ligature engravers in the Section “Voice” in Internals
Reference context, as explained in [White mensural ligatures], page 283 and [Gregorian square
neume ligatures|, page 288.

See also

Known issues and warnings

Ligatures need special spacing that has not yet been implemented. As a result, there is too
much space between ligatures most of the time, and line breaking often is unsatisfactory. Also,
lyrics do not correctly align with ligatures.

Accidentals must not be printed within a ligature, but instead need to be collected and
printed in front of it.

The syntax still uses the deprecated infix style \[music expr \]. For consistency reasons,
it will eventually be changed to postfix style note\[... note\].

Custodes

A custos (plural: custodes; Latin word for “guard”) is a symbol that appears at the end of a
staff. It anticipates the pitch of the first note of the following line, thus helping the performer
to manage line breaks during performance.

Custodes were frequently used in music notation until the seventeenth century. Nowadays,
they have survived only in a few particular forms of musical notation such as contemporary
editions of Gregorian chant like the Editio Vaticana. There are different custos glyphs used in
different flavors of notational style.

For typesetting custodes, just put a Section “Custos_engraver” in Internals Reference into
the Section “Staff” in Internals Reference context when declaring the \layout block, and change
the style of the custos with an \override if desired, as shown in the following example:

The custos glyph is selected by the style property. The styles supported are vaticana,
medicaea, hufnagel, and mensural. They are demonstrated in the following fragment

vaticanamedicaeahufnagel mensural
{ | v w

See also

Internals Reference: Section “Custos” in Internals Reference.
Examples: Section “Ancient notation” in Snippets.

Chapter 2: Specialist notation 277

Figured bass support

There is limited support for figured bass notation from the Baroque period; see Section 2.7.3
[Figured bass|, page 266.

2.8.3 Typesetting mensural music

Mensural contexts

The predefined MensuralVoice and MensuralStaff contexts can be used to engrave a piece in
mensural style. These contexts initialize all relevant context properties and grob properties to
proper values, so you can immediately go ahead entering the chant, as the following excerpt
demonstrates:

\score {
<<
\new MensuralVoice = "discantus" \transpose c c' {
\override Score.BarNumber #'transparent = ##t {

c'1\melisma bes a g\melismaEnd
f\breve
\[fi\melisma a c'\breve d'\melismaEnd \]
c'\longa
c'\breve\melisma al gl\melismaEnd
fis\longa~\signumcongruentiae

}
}
\new Lyrics \lyricsto "discantus" {
San -- ctus, San -- ctus, San -- ctus

}

>>

M

QD

n
3

San

ctus,

ctus,

<>
X

San

See also

- ctus

TODO: nothing here yet ...

Chapter 2: Specialist notation 278

Mensural clefs

The following table shows all mensural clefs that are supported via the \clef command. Some
of the clefs use the same glyph, but differ only with respect to the line they are printed on.
In such cases, a trailing number in the name is used to enumerate these clefs, numbered from
the lowest to the highest line. Still, you can manually force a clef glyph to be typeset on an
arbitrary line, as described in [Clef], page 11. The note printed to the right side of each clef in
the example column denotes the c' with respect to that clef.

Petrucci used C clefs with differently balanced left-side vertical beams, depending on which
staff line it is printed.

Description Supported Clefs Example

mensural C clef mensural-cl, mensural-c2,
mensural-c3, mensural-c4

i

mensural F clef mensural-f
+
e — —
mensural G clef mensural-g
+
neomensural C clef neomensural-cl, neomensural-c2,

neomensural-c3, neomensural-c4

i

petrucci style C clefs, for use on differ- petrucci-c1, petrucci-c2,
ent staff lines (the example shows the petrucci-c3, petrucci-c4,

2nd staff line C clef) petrucci-cb
petrucci style F clef petrucci-f
+
4
petrucci style G clef petrucci-g

m

&
hg |

Chapter 2: Specialist notation 279

See also

Notation Reference: see [Clef], page 11.

Known issues and warnings

The mensural g clef is mapped to the Petrucci g clef.

Mensural time signatures

There is limited support for mensuration signs (which are similar to, but not exactly the same
as time signatures). The glyphs are hard-wired to particular time fractions. In other words,
to get a particular mensuration sign with the \time n/m command, n and m have to be chosen
according to the following table

C (O O c
\time 4/4 \time 6/4
\time 2/2 \time 6/8

@)) © ®

\time 3/2 \time 9/4
\time 3/4 \time 9/8

) D

\time 4/8
\time 2/4

Use the style property of grob Section “TimeSignature” in Internals Reference to select
ancient time signatures. Supported styles are neomensural and mensural. The above table
uses the neomensural style. The following examples show the differences in style:

A default numbered mensural neomensural
)" 4 f [))
/\ fle A a4 i [}
@ \!/ 2 1 \L A
[Y) o o -©- ©
5 single-digit
)" 4
7\)
N _ A
ANV,
[Y) -©
See also

Notation Reference: [Time signature], page 43, gives a general introduction to the use of
time signatures.

Known issues and warnings

Ratios of note durations do not change with the time signature. For example, the ratio of 1
breve = 3 semibreves (tempus perfectum) must be made by hand, by setting

breveTP = #(ly:make-duration -1 0 3 2)

{ c\breveTP f1 }
This sets breveTP to 3/2 times 2 = 3 times a whole note.

The mensural68alt and neomensural68alt symbols (alternate symbols for 6/8) are not
addressable with \time. Use \markup {\musicglyph #"timesig.mensural68alt" } instead.

Chapter 2: Specialist notation 280

Mensural note heads

For ancient notation, a note head style other than the default style may be chosen. This is
accomplished by setting the style property of the Section “NoteHead” in Internals Reference
object to baroque, neomensural, mensural or petrucci.

The baroque style differs from the default style by:
e Providing a maxima notehead, and

e Using a square shape for \breve note heads.

The neomensural, mensural, and petrucci styles differ from the baroque style by:
e Using rhomboidal heads for semibreves and all smaller durations, and

e Centering the stems on the note heads.

The following example demonstrates the petrucci style:

\set Score.skipBars = ##t

\autoBeam0f f

\override NoteHead #'style = #'petrucci

a'\maxima a'l\longa a'\breve a'l a'2 a'4 a'8 a'l16 a'

n | | A
)" 4 | | N\
(s €) \ + t‘zm
U e [\) [\)
ANV
[Y)
See also

Section B.7 [Note head styles], page 462 gives an overview of all available note head styles.

Mensural flags

Use the flag-style property of grob Section “Stem” in Internals Reference to select ancient
flags. Besides the default flag style, only the mensural style is supported.

\override Stem #'flag-style = #'mensural

\override Stem #'thickness #1.0

\override NoteHead #'style = #'mensural

\autoBeam0Of f

c'8 d'8 e'8 £'8 c'16 4'16 e¢'16 £'16 ¢'32 d'32 ¢'32 £'32 s8
c''8d''8e''8 £''8 c''16 d''16 e''16 £''16 c''32 d''32 e''32 £''32

p—_—
N (@4
D
-

G

G e

[\ v ¢ ° (¢

Note that the innermost flare of each mensural flag always is vertically aligned with a staff
line.

There is no particular flag style for neo-mensural or Petrucci notation. There are no flags in
Gregorian chant notation.

Chapter 2: Specialist notation 281

See also
TODO: nothing here yet ...

Known issues and warnings
The attachment of ancient flags to stems is slightly off.

Vertically aligning each flag with a staff line assumes that stems always end either exactly
on or exactly in the middle between two staff lines. This may not always be true when using
advanced layout features of classical notation (which however are typically out of scope for
mensural notation).

Mensural rests

Use the style property of grob Section “Rest” in Internals Reference to select ancient rests.
Supported styles are classical, neomensural, and mensural. classical differs from the
default style only in that the quarter rest looks like a horizontally mirrored 8th rest. The
mensural and the neomensural styles mimic the appearance of rests in manuscripts and prints
up to the 16th century.

The following example demonstrates the mensural and neomensural styles:

\set Score.skipBars = #i#t

\override Rest #'style = #'classical
r\longa~"classical" r\breve rl r2 r4 r8 ri16 s \break
\override Rest #'style = #'mensural
r\longa”"mensural" r\breve rl r2 r4 r8 r16 s \break
\override Rest #'style = #'neomensural
r\longa~"neomensural" r\breve rl r2 r4 r8 ril6

classical

VX | | | - -
\ WA |

FT8|
~Ne|
~Nele

G

mensural

I | Ll 1 [LY A

P

neomensural

= | | L] 1 = I

P

There are no 32th and 64th rests specifically for the mensural or neo-mensural style. Instead,
the rests from the default style will be taken.

See Section “Ancient notation” in Snippets for a chart of all rests.

See also

Notation Reference: [Rests|, page 37, gives a general introduction into the use of rests.

Mensural accidentals and key signatures

The mensural style provides a sharp and a flat sign different from the default style. If called
for, the natural sign will be taken from the vaticana style.

Chapter 2: Specialist notation 282

mensural

b x

The style for accidentals and key signatures is controlled by the glyph-name-alist property
of the grobs Section “Accidental” in Internals Reference and Section “KeySignature” in Internals
Reference, respectively; e.g.:

\override Staff.Accidental #'glyph-name-alist = #alteration-mensural-glyph-
name-alist

See also

Notation Reference: Section 1.1 [Pitches|, page 1, [Accidentals], page 4, and [Automatic
accidentals|, page 18 give a general introduction of the use of accidentals. [Key signature],
page 14 gives a general introduction of the use of key signatures.

Internals Reference: Section “KeySignature” in Internals Reference.

Annotational accidentals (musica ficta)

In European music from before about 1600, singers were expected to chromatically alter notes
at their own initiative according to certain rules. This is called musica ficta. In modern tran-
scriptions, these accidentals are usually printed over the note.

Support for such suggested accidentals is included, and can be switched on by setting
suggestAccidentals to true.
fis gis
\set suggestAccidentals = ##t
ais bis

This will treat every subsequent accidental as musica ficta until it is unset with \set
suggestAccidentals = ##f. A more practical way is to use \once \set suggestAccidentals
= ##t, which can even be defined as a convenient shorthand:

ficta = { \once \set suggestAccidentals = ##t }
\score { \relative c''
\new MensuralVoice {
\once \set suggestAccidentals = #i#t
bes4 a2 g2 \ficta fis8 \ficta e! fis2 gl

}
}
. b B
\YJ
VA) — 4
——| MY ’
|
See also

Internals Reference: Section “Accidental_engraver” in Internals Reference engraver and the
Section “AccidentalSuggestion” in Internals Reference object.

Chapter 2: Specialist notation 283

White mensural ligatures

There is limited support for white mensural ligatures.

To engrave white mensural ligatures, in the layout block, replace the Section “Liga-
ture_bracket_engraver” in Internals Reference with the Section “Mensural_ligature_engraver”
in Internals Reference in the Section “Voice” in Internals Reference context:

\layout {
\context {
\Voice
\remove Ligature_bracket_engraver
\consists Mensural_ligature_engraver

}
+

There is no additional input language to describe the shape of a white mensural ligature.
The shape is rather determined solely from the pitch and duration of the enclosed notes. While
this approach may take a new user a while to get accustomed to, it has the great advantage
that the full musical information of the ligature is known internally. This is not only required
for correct MIDI output, but also allows for automatic transcription of the ligatures.

For example,

\score {
\transpose ¢ c' {
\set Score.timing = ##f
\set Score.defaultBarType = "empty"
\override NoteHead #'style = #'neomensural
\override Staff.TimeSignature #'style = #'neomensural
\clef "petrucci-g"
\[c¢'\maxima g \]
\[d\longa c\breve f e d \]
\[c'\maxima d'\longa \]
\[e'l a g\breve \]
}
\layout {
\context {
\Voice
\remove Ligature_bracket_engraver
\consists Mensural_ligature_engraver

+
}
}

QD

— =
= IS j N

Without replacing Section “Ligature_bracket_engraver” in Internals Reference with Section
“Mensural_ligature_engraver” in Internals Reference, the same music transcribes to the following

D
)
|
|
Il
o

Chapter 2: Specialist notation 284

See also
TODO: nothing here yet ...

Known issues and warnings

Horizontal spacing of ligatures is poor.

2.8.4 Typesetting Gregorian chant

When typesetting a piece in Gregorian chant notation, the Section “Vaticana_ligature_engraver”
in Internals Reference automatically selects the proper note heads, so there is no need to explic-
itly set the note head style. Still, the note head style can be set, e.g., to vaticana_punctum to
produce punctum neumes. Similarly, the Section “Mensural_ligature_engraver” in Internals Ref-
erence automatically assembles mensural ligatures. See [Ligatures|, page 275, for how ligature
engravers work.

Gregorian chant contexts

The predefined VaticanaVoiceContext and VaticanaStaffContext can be used to engrave
a piece of Gregorian chant in the style of the Editio Vaticana. These contexts initialize all
relevant context properties and grob properties to proper values, so you can immediately go
ahead entering the chant, as the following excerpt demonstrates:

\include "gregorian.ly"
\score {
<<
\new VaticanaVoice = "cantus" {
\[c'\melisma c' \flexa a \]
\[a \flexa \deminutum g\melismaEnd \]
f \divisioMinima
\[f\melisma \pes a c¢' c¢' \pes d'\melismaEnd \]
c¢' \divisioMinima \break
\[c'\melisma c' \flexa a \]
\[a \flexa \deminutum g\melismaEnd \] f \divisioMinima
}
\new Lyrics \lyricsto "cantus" {
San- ctus, San- ctus, San- ctus

3

>>

San- ctus, San- ctus,

-

e

San- ctus

See also
TODO: nothing here yet ...

Chapter 2: Specialist notation

Gregorian clefs

285

The following table shows all Gregorian clefs that are supported via the \clef command. Some
of the clefs use the same glyph, but differ only with respect to the line they are printed on.
In such cases, a trailing number in the name is used to enumerate these clefs, numbered from
the lowest to the highest line. Still, you can manually force a clef glyph to be typeset on an
arbitrary line, as described in [Clef], page 11. The note printed to the right side of each clef in
the example column denotes the c' with respect to that clef.

Description

Editio Vaticana style do clef

Editio Vaticana style fa clef

Editio Medicaea style do clef

Editio Medicaea style fa clef

hufnagel style do clef

hufnagel style fa clef

hufnagel style combined do/fa clef

See also

Supported Clefs

vaticana-dol, vaticana-do2,
vaticana-do3

vaticana-fal, vaticana-fa2

medicaea-dol, medicaea—-do2,
medicaea-do3

medicaea-fal, medicaea—-fa2

hufnagel-dol, hufnagel-do2,

hufnagel-do3

hufnagel-fal, hufnagel-fa2

hufnagel-do-fa

Notation Reference: see [Clef], page 11.

Example

Chapter 2: Specialist notation 286

Gregorian accidentals and key signatures

Accidentals for the three different Gregorian styles are available:

vaticana medicaea hufnagel
-) L

As shown, not all accidentals are supported by each style. When trying to access an unsup-
ported accidental, LilyPond will switch to a different style.

The style for accidentals and key signatures is controlled by the glyph-name-alist property
of the grobs Section “Accidental” in Internals Reference and Section “KeySignature” in Internals
Reference, respectively; e.g.:

\override Staff.Accidental #'glyph-name-alist = #alteration-mensural-glyph-
name-alist

See also

Notation Reference: Section 1.1 [Pitches|, page 1, [Accidentals], page 4, and [Automatic
accidentals], page 18 give a general introduction of the use of accidentals. [Key signature],
page 14 gives a general introduction of the use of key signatures.

Internals Reference: Section “KeySignature” in Internals Reference.

Divisiones
There are no rests in Gregorian chant notation; instead, it uses [Divisiones], page 286.

A divisio (plural: divisiones; Latin word for ‘division’) is a staff context symbol that is used
to indicate the phrase and section structure of Gregorian music. The musical meaning of divisio
minima, divisio maior, and divisio mazxima can be characterized as short, medium, and long
pause, somewhat like the breathmarks from [Breath marks], page 91. The finalis sign not only
marks the end of a chant, but is also frequently used within a single antiphonal/responsorial
chant to mark the end of each section.

To use divisiones, include the file ‘gregorian.ly’. It contains definitions that you can apply
by just inserting \divisioMinima, \divisioMaior, \divisioMaxima, and \finalis at proper
places in the input. Some editions use virgula or caesura instead of divisio minima. Therefore,
‘gregorian.ly’ also defines \virgula and \caesura

divisio minima divisio maior divisio maxima

finalis virgula caesura

~

~

Predefined commands

\virgula, \caesura, \divisioMinima, \divisioMaior, \divisioMaxima, \finalis.

Chapter 2: Specialist notation 287

Gregorian articulation signs

In addition to the standard articulation signs described in section [Articulations and ornamen-
tations|, page 81, articulation signs specifically designed for use with notation in Editio Vaticana
style are provided.

\include "gregorian.ly"
\score {
\new VaticanaVoice {

\override TextScript #'font-family = #'typewriter
\override TextScript #'font-shape = #'upright
\override Script #'padding = #-0.1
al\ictus_"ictus " \break
a\circulus_"circulus " \break
a\semicirculus_"semicirculus " \break
a\accentus_"accentus " \break
\[a_"episema" \episemInitium \pes b \flexa a b \episemFinis \flexa a \]

}
}
[] I
LI] *]] i
ictus circulus semicirculus accentus
Lﬁhi
episema
See also

TODO: nothing here yet ...

Known issues and warnings
Some articulations are vertically placed too closely to the corresponding note heads.

The episema line is not displayed in many cases. If it is displayed, the right end of the
episema line is often too far to the right.

Augmentum dots (morae)

Augmentum dots, also called morae, are added with the music function \augmentum. Note that
\augmentum is implemented as a unary music function rather than as head prefix. It applies to
the immediately following music expression only. That is, \augmentum \virga c will have no
visible effect. Instead, say \virga \augmentum c or \augmentum {\virga c}. Also note that
you can say \augmentum {a g} as a shortcut for \augmentum a \augmentum g.

\include "gregorian.ly"
\score {
\new VaticanaVoice {
\[\augmentum a \flexa \augmentum g \]
\augmentum g
}
}

Chapter 2: Specialist notation 288

See also
Notation Reference: [Breath marks|, page 91.
Internals Reference: Section “BreathingSign” in Internals Reference.

Examples: Section “Ancient notation” in Snippets.

Gregorian square neume ligatures

There is limited support for Gregorian square neumes notation (following the style of the Editio
Vaticana). Core ligatures can already be typeset, but essential issues for serious typesetting are
still lacking, such as (among others) horizontal alignment of multiple ligatures, lyrics alignment,
and proper handling of accidentals.

The support for Gregorian neumes is enabled by \includeing "gregorian.ly" at the beginning
of the file. This makes available a number of extra commands to produce the neume symbols
used in plainchant notation.

Note heads can be modified and/or joined.

e The shape of the note head can be modified by prefixing the note name with any of the fol-
lowing commands: \virga, \stropha, \inclinatum, \auctum, \descendens, \ascendens,
\oriscus, \quilisma, \deminutum, \cavum, \linea.

e Ligatures, properly speaking (i.e. notes joined together), are produced by placing one of
the joining commands \pes or \flexa, for upwards and downwards movement, respectively,
between the notes to be joined.

A note name without any qualifiers will produce a punctum. All other neumes, including
the single-note neumes with a different shape such as the wvirga, are in principle considered as
ligatures and should therefore be placed between \[...\].

Single-note neumes:

e The punctum is the basic note shape (in the Vaticana style: a square with some curvation
for typographical finesse). In addition to the regular punctum, there is also the oblique
punctum inclinatum, produced with the prefix \inclinatum. The regular punctum can be
modified with \cavum, which produces a hollow note, and \linea, which draws vertical
lines on either side of the note.

e The virga has a descending stem on the right side. It is produced by the modifier \virga.

Ligatures

Unlike most other neumes notation systems, the typographical appearance of ligatures is not
directly dictated by the input commands, but follows certain conventions dependent on musical
meaning. For example, a three-note ligature with the musical shape low-high-low, such as \[a
\pes b \flexa g \1, produces a Torculus consisting of three Punctum heads, while the shape
high-low-high, such as \[a \flexa g \pes b \], produces a Porrectus with a curved flexa shape
and only a single Punctum head. There is no command to explicitly typeset the curved flexa
shape; the decision of when to typeset a curved flexa shape is based on the musical input. The
idea of this approach is to separate the musical aspects of the input from the notation style of
the output. This way, the same input can be reused to typeset the same music in a different
style of Gregorian chant notation.

Liquescent neumes

Another main category of notes in Gregorian chant is the so-called liquescent neumes. They
are used under certain circumstances at the end of a syllable which ends in a ‘liquescent’ letter,
i.e. the sounding consonants that can hold a tone (the nasals, 1, r, v, j, and their diphtong

Chapter 2: Specialist notation 289

equivalents). Thus, the liquescent neumes are never used alone (although some of them can be
produced), and they always fall at the end of a ligature.

Liquescent neumes are represented graphically in two different, more or less interchangeable
ways: with a smaller note or by ‘twisting’ the main note upwards or downwards. The first is
produced by making a regular pes or flexa and modifying the shape of the second note: \[a
\pes \deminutum b \] , the second by modifying the shape of a single-note neume with \auctum
and one of the direction markers \descendens or \ascendens, e.g. \[\auctum \descendens

a\l.
Special signs

A third category of signs is made up of a small number of signs with a special meaning
(which, incidentally, in most cases is only vaguely known): the quilisma, the oriscus, and the
strophicus. These are all produced by prefixing a note name with the corresponding modifier,
\quilisma, \oriscus, or \stropha.

Virtually, within the ligature delimiters \ [and \], any number of heads may be accumulated
to form a single ligature, and head prefixes like \pes, \flexa, \virga, \inclinatum, etc. may
be mixed in as desired. The use of the set of rules that underlies the construction of the ligatures
in the above table is accordingly extrapolated. This way, infinitely many different ligatures can
be created.

Note that the use of these signs in the music itself follows certain rules, which are not checked
by Lilypond. E.g., the quilisma is always the middle note of an ascending ligature, and usually
falls on a half-tone step, but it is perfectly possible, although incorrect, to make a single-note
quilisma.

In addition to the note signs, gregorian.ly also defines the commands \versus, \responsum,
\ij, \iij, \IJ, and \IIJ, that will produce the corresponding characters, e.g. for use in lyrics,
as section markers, etc. These commands use special unicode characters and will only work if a
font is used which supports them.

The following table shows a limited, but still representative pool of Gregorian ligatures,
together with the code fragments that produce the ligatures. The table is based on the extended
neumes table of the 2nd volume of the Antiphonale Romanum (Liber Hymnarius), published
1983 by the monks of Solesmes. The first column gives the name of the ligature, with the main
form in boldface and the liquescent forms in italics. The third column shows the code fragment
that produces this ligature, using g, a, and b as example pitches.

Single-note neums

Basic and Liquescent forms Output Lilypond
code
Punctum \[Db\]

\[\cavum b \]

Chapter 2: Specialist notation

Punctum Auctum Ascendens

Punctum Auctum Descendens

Punctum inclinatum

Punctum Inclinatum Auctum

Punctum Inclinatum Parvum

Virga

Two-note ligatures

Clivis vel Flexa

Clivis Aucta Descendens

Clivis Aucta Ascendens

290

\[\linea b \]

\[\auctum \ascendens b \]

\[\auctum \descendens b \]

\[\inclinatum b \]

\[\inclinatum \auctum b \]

\[\inclinatum \deminutum b \]

\[b \flexa g \]

\[b \flexa \auctum \descendens

g \]

\[b \flexa \auctum \ascendens

g \]

Chapter 2: Specialist notation 291

Cephalicus \[b \flexa \deminutum g \]

Podatus/Pes \[g \pes b \]

Pes Auctus Descendens \[g \pes \auctum \descendens b

\]

Pes Auctus Ascendens \[g \pes \auctum \ascendens b

\]

Epiphonus \[g \pes \deminutum b \]
v
Pes Initio Debilis \[\deminutum g \pes b \]
:
Pes Auctus Descendens Initio Debilis \[\deminutum g \pes \auctum
\descendens b \]
)
Multi-note ligatures
Torculus \[a \pes b \flexa g \]

Torculus Auctus Descendens \[a \pes b \flexa \auctum
\descendens g \]

Chapter 2: Specialist notation

Torculus Deminutus

Torculus Initio Debilis

Torculus Auctus Descendens Initio

Debilis

Torculus Deminutus Initio Debilis

Porrectus

Porrectus Auctus Descendens

Porrectus Deminutus

Climacus

Climacus Auctus

"oy

292

\[a \pes b \flexa \deminutum g
\]

\[\deminutum a \pes b \flexa g
\]

\[\deminutum a \pes b \flexa
\auctum \descendens g \]

\[\deminutum a \pes b \flexa
\deminutum g \]

\[a \flexa g \pes b \]

\[a \flexa g \pes \auctum
\descendens b \]

\[a \flexa g \pes \deminutum b
\]

\[\virga b \inclinatum a
\inclinatum g \]

\[\virga b \inclinatum a
\inclinatum \auctum g \]

Chapter 2: Specialist notation 293

Climacus Deminutus \[\virga b \inclinatum a
\inclinatum \deminutum g \]

A

Scandicus \[g \pes a \virga b \]

Scandicus Auctus Descendens \[g \pes a \pes \auctum
\descendens b \]

Scandicus Deminutus \[g \pes a \pes \deminutum b \]

Special Signs

Quilisma \[g \pes \quilisma a \pes b \]

Quilisma Pes Auctus Descendens \[\quilisma g \pes \auctum
\descendens b \]

Oriscus \[\oriscus b \]

Pes Quassus \[\oriscus g \pes \virga b \]

Pes Quassus Auctus Descendens \[\oriscus g \pes \auctum
\descendens b \]

Chapter 2: Specialist notation 294

Salicus \[g \oriscus a \pes \virga b \]

Salicus Auctus Descendens \[g \oriscus a \pes \auctum
\descendens b \]

(Apo)stropha \[\stropha b \]
’

Stropha Aucta \ [\stropha \auctum b \]
s

Bistropha \[\stropha b \stropha b \]
’"

Tristropha \[\stropha b \stropha b
’es \stropha b \]

Trigonus \[\stropha b \stropha b

\stropha a \]

19,

Predefined commands

The following head prefixes are supported: \virga, \stropha, \inclinatum, \auctum,
\descendens, \ascendens, \oriscus, \quilisma, \deminutum, \cavum, \linea.

Head prefixes can be accumulated, though restrictions apply. For example, either
\descendens or \ascendens can be applied to a head, but not both to the same head.

Two adjacent heads can be tied together with the \pes and \flexa infix commands for a
rising and falling line of melody, respectively.

Use the unary music function \augmentum to add augmentum dots.

See also
TODO: nothing here yet ...

Chapter 2: Specialist notation 295

Known issues and warnings

When an \augmentum dot appears at the end of the last staff within a ligature, it is sometimes
vertically placed wrong. As a workaround, add an additional skip note (e.g. s8) as last note of
the staff.

\augmentum should be implemented as a head prefix rather than a unary music function,
such that \augmentum can be intermixed with head prefixes in arbitrary order.

2.8.5 Working with ancient music—scenarios and solutions

Working with ancient music frequently involves particular tasks which differ considerably from
the modern notation for which Lilypond is designed. In the rest of this section, a number of
typical scenarios are outlined, with suggestions of solutions. These involve:

e how to make incipits (i.e. prefatory material to indicate what the original has looked like)
to modern transcriptions of mensural music;

e how to achieve the Mensurstriche layout frequently used for modern transcriptions of poly-
phonic music;

e how to transcribe Gregorian chant in modern notation;

e how to generate both ancient and modern notation from the same source.

Incipits
TBC

See also

Mensurstriche layout

Mensurstriche (‘mensuration lines’) is the accepted term for bar lines that are drawn between
the staves of a system but not through the staves themselves. It is a common way to preserve
the rhythmic appearance of the original, i.e. not having to break syncopated notes at bar lines,
while still providing the orientation aids that bar lines give.

The mensurstriche-layout where the bar lines do not show on the staves but between staves
can be achieved with a StaffGroup instead of a ChoirStaff. The bar line on staves is blanked
out by setting the transparent property.

global = {
\override Staff.BarLine #'transparent = ##t
sl s

% the final bar line is not interrupted
\revert Staff.BarLine #'transparent
\bar "|."
}
\new StaffGroup \relative c'' {
<<
\new Staff { << \global { c1 c } > }
\new Staff { << \global { c ¢ } > }
>>

Chapter 2: Specialist notation 296

O [@)

p_—
N (@4

e P

See also

Transcribing Gregorian chant
Gregorian chant can be transcribed into modern notation with a number of simple tweaks.

Stems. Stems can be left out altogether by \remove-ing the Stem_engraver from the Voice
context:

\layout {
\context {
\Voice
\remove "Stem_engraver"

However, in some transcription styles, stems are used occasionally, for example to indicate the
transition from a single-tone recitative to a fixed melodic gesture. In these cases, one can use
either \override Stem #'transparent = ##t or \override Stem #'length = #0 instead, and
restore the stem when needed with the corresponding \once \override Stem #'transparent =
##f (see example below).

Timing. For unmetered chant, there are several alternatives.

The Time_signature_engraver can be removed from the Staff context without any negative
side effects. The alternative, to make it transparent, will leave an empty space in the score,
since the invisible signature will still take up space.

In many cases, \set Score.timing = ##f will give good results. Another alternative is to
use \\CadenzaOn and \CadenzaOff.

To remove the barlines, the radical approach is to \remove the Bar_engraver from the Staff
context. Again, one may want to use \override BarLine #'transparent = ##t instead, if an
occasional barline is wanted.

A common type of transcription is recitativic chant where the repeated notes are indicated
with a single breve. The text to the recitation tone can be dealt with in two different ways:
either set as a single, left-aligned syllable:

\include "gregorian.ly"

chant = \relative c' {
\clef "G_8"
c\breve c4 b4 a c2 c4 \divisioMaior
c\breve c4 c f, f \finalis

}

verba = \lyricmode {
\once \override LyricText #'self-alignment-X = #-1

"Noctem quietam et" fi -- nem per -- fec -- tum
\once \override LyricText #'self-alignment-X = #-1
"concedat nobis Dominus" om -- ni -- po -- tems.

}

Chapter 2: Specialist notation 297

\score {

\new Staff <<

\new Voice = "melody" \chant

\new Lyrics = "one" \lyricsto melody \verba

>>

\layout {

\context {

\Staff
\remove "Time_signature_engraver"
\remove "Bar_engraver"
\override Stem #'transparent = ##t

-_,.ac’:u o o

() ‘ [_—_

Noctem quietam et finem perfectum concedat nobis Dominus omnipotens.

This works fine, as long as the text doesn’t span a line break. If that is the case, an alternative
is to add hidden notes to the score, here in combination with changing stem visibility:

\include "gregorian.ly"

chant = \relative c' {
\clef "G_8"
\set Score.timing = ##f
c\breve \override NoteHead #'transparent = ##t c c c c c
\revert NoteHead #'transparent
\override Stem #'transparent = ##f \stemUp c4 b4 a
\override Stem #'transparent = ##t c2 c4 \divisioMaior
c\breve \override NoteHead #'transparent = ##t c c c c c c ¢
\revert NoteHead #'transparent c4 c f, f \finalis

verba = \lyricmode {
No -- ctem qui -- e -- tam et fi -- nem per —- fec -- tum
con -- ce -- dat no -- bis Do -- mi -- nus om -- ni -- po -- tems.

¥

\score {
\new Staff <<
\new Voice = "melody" \chant
\new Lyrics \lyricsto "melody" \verba
>>
\layout {
\context {
\Staff
\remove "Time_signature_engraver"
\override BarLine #'transparent = ##t
\override Stem #'transparent = ##t

Chapter 2: Specialist notation 298

() |
L — s g o e to o

() . [—_\
%

Noctem qui-etam et finem perfectum concedat nobis Dominus omnipotens.

Another common situation is transcription of neumatic or melismatic chants, i.e. chants
with a varying number of notes to each syllable. In this case, one would want to set the syllable
groups clearly apart, usually also the subdivisions of a longer melisma. One way to achieve this
is to use a fixed \time, e.g. 1/4, and let each syllable or note group fill one of these measures,
with the help of tuplets or shorter durations. If the barlines and all other rhythmical indications
are made transparent, and the space around the barlines is increased, this will give a fairly good
representation in modern notation of the original.

To avoid that syllables of different width (such as “-ri” and “-rum”) spread the syllable note
groups unevenly apart, the #'X-extent property of the LyricText object may be set to a fixed
value. Another, more cumbersome way would be to add the syllables as \markup elements. If
further adjustments are necessary, this can be easily done with s ‘notes’.

spiritus = \relative c' {
\time 1/4
\override Lyrics.LyricText #'X-extent = #'(0 . 3)
d4 \times 2/3 { f8 a g} ga ad g f8 e
dd f8 g g8 d f gag f4 g8 a a4 s
\times 2/3 { g8 £ d } e f g a g4

3
spirLyr = \lyricmode {
Spi -—- ri - _ _tus _ Do --mi --ni _ re -- ple -- _ vit _
or —— _bem _ ter -— ra -— _ rum, al —- _ _ le —— _ 1u
-- _ ia.
}
\score {
\new Staff <<
\new Voice = "chant" \spiritus
\new Lyrics = "one" \lyricsto "chant" \spirLyr
>>
\layout {
\context {
\Staff
\remove "Time_signature_engraver"
\override BarLine #'X-extent = #'(-1 . 1)
\override Stem #'transparent = ##t
\override Beam #'transparent = ##t
\override BarLine #'transparent = ##t
\override TupletNumber #'transparent = ##t
}
b

Chapter 2: Specialist notation 299

o)
A
%!—'—"—. . o o, - s o _—

Spi - ri - tus Do - mi - ni re - ple - vit
10
9
® 9 pu o ® e *s, o o ® o
or - bem ter - ra - rum, al - le - lu - ia.
See also

Ancient and modern from one source
TBC

See also

Editorial markings
TBC

See also

2.9 World music

The purpose of this section is to highlight musical notation issues that are relevant to traditions
outside the Western tradition.

2.9.1 Arabic music

This section highlights issues that are relevant to notating Arabic music.

References for Arabic music

Arabic music so far has been mainly an oral tradition. When music is transcribed, it is usually
in a sketch format, on which performers are expected to improvise significantly. Increasingly,
Western notation, with a few variations, is adopted in order to communicate and preserve Arabic
music.

Some elements of Western musical notation such as the transcription of chords or independent
parts, are not required to typeset the more traditional Arabic pieces. There are however some
different issues, such as the need to indicate medium intervals that are somewhere between a
semi-tone and a tone, in addition to the minor and major intervals that are used in Western
music. There is also the need to group and indicate a large number of different magams (modes)
that are part of Arabic music.

In general, Arabic music notation does not attempt to precisely indicate microtonal elements
that are present in musical practice.

Several issues that are relevant to Arabic music are covered elsewhere:

e Note names and accidentals (including quarter tones) can be tailored as discussed in [Note
names in other languages|, page 6.

e Additional key signatures can also be tailored as described in [Key signature], page 14.

Chapter 2: Specialist notation 300

e Complex time signatures may require that notes be grouped manually as described in
[Manual beams|, page 65.

e Takasim which are rhythmically free improvisations may be written down omitting bar lines
as described in [Unmetered music], page 47.

See also

Notation Reference: [Note names in other languages|, page 6, [Key signature], page 14,
[Manual beams]|, page 65.

Snippets: Section “World music” in Snippets.

Arabic note names

The more traditional Arabic note names can be quite long and are not suitable for the purpose
of music writing, so they are not used. English note names are not very familiar in Arabic music
education, so Italian or Solfege note names (do, re, mi, fa, sol, la, si) are used instead.
Modifiers (accidentals) can also be used, as discussed in [Note names in other languages|, page 6.

For example, this is how the Arabic rast scale can be notated:

\include "arabic.ly"
\relative do' {
do re misb fa sol la sisb do sisb la sol fa misb re do

0 . |

r) i | !
(o WAL W I ﬁﬁ_‘ 1
:, & [| -0

The symbol for semi-flat does not match the symbol which is used in Arabic notation. The
\dwn symbol defined in arabic.ly may be used preceding a flat symbol as a work around if it is
important to use the specific Arabic semi-flat symbol. The appearance of the semi-flat symbol
in the key signature cannot be altered by using this method.

\include "arabic.ly"
\relative do' {

\set Staff.extraNatural = ##f

dod dob dosd \dwn dob dobsb dodsd do do
}

r @)
\ U7

L] 72] 1L 1

ﬂ:o-bo-;o-’bo- d?cbmoqo- &

Jz et

See also

Notation Reference: [Note names in other languages|, page 6.
Snippets: Section “World music” in Snippets.

Arabic key signatures

In addition to the minor and major key signatures, the following key signatures are defined in
arabic.ly: bayati, rast, sikah, iraq, and kurd. These key signatures define a small number of
magam groups rather than the large number of magams that are in common use.

In general, a magam uses the key signature of its group, or a neighbouring group, and varying
accidentals are marked throughout the music.

For example to indicate the key signature of a maqam muhayer piece:

Chapter 2: Specialist notation 301

\key re \bayati

Here re is the default pitch of the muhayer maqam, and bayati is the name of the base magam
in the group.

While the key signature indicates the group, it is common for the title to indicate the more
specific maqgam, so in this example, the name of magam muhayer should appear in the title.

Other magams in the same bayati group, as shown in the table below: (bayati, hussaini,
saba, and ushaq) can be indicated in the same way. These are all variations of the base and
most common maqgam in the group, which is bayati. They usually differ from the base magam
in their upper tetrachords, or certain flow details that don’t change their fundamental nature,
as siblings.

The other magam in the same group (Nawa) is related to bayati by modulation which is in-
dicated in the table in parenthesis for those maqgams that are modulations of their base magam.
Arabic magams admit of only limited modulations, due to the nature of Arabic musical instru-
ments. Nawa can be indicated as follows:

\key sol \bayati

In Arabic music, the same term such as bayati that is used to indicate a magam group, is
also a maqam which is usually the most important in the group, and can also be thought of as
a base maqgam.

Here is one suggested grouping that maps the more common magams to key signatures:

magam key finalis Other magmas in group (finalis)

group

ajam major sib jaharka (fa)

bayati bayati re hussaini, muhayer, saba, ushaq, nawa (sol)
hijaz kurd re shahnaz, shad arban (sol), hijazkar (do)
iraq iraq sisb -

kurd kurd re hijazkar kurd (do)

nahawand minor do busalik (re), farah faza (sol)

nakriz minor do nawa athar, hisar (re)

rast rast do mahur, yakah (sol)

sikah sikah misb huzam

Selected Snippets
Non-traditional key signatures
The commonly used \key command sets the keySignature property, in the Staff context.
To create non-standard key signatures, set this property directly. The format of this command
is a list:

\set Staff.keySignature = # (((octave . step) . alter) ((octave . step) . alter)
...) where, for each element in the list, octave specifies the octave (0 being the octave
from middle C to the B above), step specifies the note within the octave (0 means C and 6
means B), and alter is ,SHARP ,FLAT ,DOUBLE-SHARP etc. (Note the leading comma.) The
accidentals in the key signature will appear in the reverse order to that in which they are
specified.

Alternatively, for each item in the list, using the more concise format (step . alter) specifies
that the same alteration should hold in all octaves.

For microtonal scales where a "sharp" is not 100 cents, alter refers to the alteration as a
proportion of a 200-cent whole tone.

Here is an example of a possible key signature for generating a whole-tone scale:

Chapter 2: Specialist notation 302

\relative c' {
\set Staff.keySignature = # (((0 . 3) . ,SHARP)
(0 . 5) . ,FLAT)
(0 . 6) . ,FLAT))
c4d d e fis
aes4 bes c2

0} |
)" 4

(52b € ! o
BARESSE |

Koy

See also
Notation Reference: [Key signature|, page 14.
Learning Manual: Section “Accidentals and key signatures” in Learning Manual.
Internals Reference: Section “KeySignature” in Internals Reference.

Snippets: Section “World music” in Snippets, Section “Pitches” in Snippets.

Arabic time signatures

Some Arabic and Turkish music classical forms such as Semai use unusual time signatures such
as 10/8. This may lead to an automatic grouping of notes that is quite different from existing
typeset music, where notes may not be grouped on the beat, but in a manner that is difficult
to match by adjusting automatic beaming. You can override this by switching off automatic
beaming and beaming the notes manually. Where matching existing typeset music is not an
issue, you may still want to adjust the beaming behaviour and/or use compound time signatures.

Selected Snippets
Compound time signatures

Odd 20th century time signatures (such as "5/8") can often be played as compound time
signatures (e.g. "3/8 + 2/8"), which combine two or more inequal metrics. LilyPond can make
such music quite easy to read and play, by explicitly printing the compound time signatures and
adapting the automatic beaming behavior. (Graphic measure grouping indications can also be
added; see the appropriate snippet in this database.)

#(define ((compound-time one two num) grob)
(grob-interpret-markup grob
(markup #:override '(baseline-skip . 0) #:number
(#:1ine (
(#:column (one num))
#:vcenter "+"
(#:column (two num)))))))

\relative c' {
\override Staff.TimeSignature #'stencil = #(compound-time "2" "3" "8")
\time 5/8
#(override-auto-beam-setting '(end 1 8 5 8) 1 4)
c8 d e fis gis
c8 fis, gis e d
c8 d e4 gis8

Chapter 2: Specialist notation 303

()
———T7, e — p—

r_; * He | i
[y, o <

oo
~

+

AT
Q

Arabic improvisation

For improvisations or taqasim which are temporarily free, the time signature can be omitted
and \cadenzaOn can be used. Adjusting the accidental style might be required, since the absence
of bar lines will cause the accidental to be marked only once. Here is an example of what could
be the start of a hijaz improvisation:

\include "arabic.ly"

\relative sol' {
\key re \kurd
#(set-accidental-style 'forget)
\cadenzaOn
so0l4d sol sol sol fad mib soll fad8 mib re4. r8 mibl fad sol

0|
Y 1D | | | | —
A bhH (e | | | |] (V]
L O Lk | /i 1L
U Ll .—G_HD—

See also

Notation Reference: [Manual beams|, page 65, [Automatic beams|, page 54, [Unmetered
music|, page 47, [Automatic accidentals|, page 18, [Setting automatic beam behavior], page 56,
[Time signature], page 43.

Snippets: Section “World music” in Snippets.

Arabic music example

Here is a template that also uses the start of a Turkish Semai that is familiar in Arabic music
education in order to illustrate some of the peculiarities of Arabic music notation, such as
medium intervals and unusual modes that are discussed in this section.

\include "arabic.ly"
\score {
\relative re' {
\set Staff.extraNatural = ##f
\set Staff.autoBeaming = ##f
\key re \bayati
\time 10/8

red re'8 rel6 [misb re do] sisb [la sisb do] red r8

rel6 [misb do re] sisb [do] la [sisb s018] la [sisb] do [re] misb
fad4 fal6 [misb] misb8. [rel6] re8 [misb] re [do] sisb

do4 sisb8 misbl6 [re do sisb] la [do sisb la] la4d r8

b
\header {
title = "Semai Muhayer"
composer = "Jamil Bek"
b

}

Chapter 2: Specialist notation 304

a

NG
03
i
i
|L§

>

ey

[

;$
N | ’
e

N
|

See also

Snippets: Section “World music” in Snippets

Further reading

1.

The music of the Arabs by Habib Hassan Touma [Amadeus Press, 1996], contains a discus-
sion of maqams and their method of groupings.

There are also various web sites that explain maqgams and some provide audio examples
such as :

e http://www.magamworld.com/
e http://www.turath.org/
There are some variations in the details of how maqams are grouped, despite agreement on

the criteria of grouping maqams that are related through common lower tetra chords, or
through modulation.

There is not a complete consistency, sometimes even in the same text on how key signatures
for particular magams should be specified. It is common, however, to use a key signature
per group, rather than a different key signature for each different magam.

Oud methods by the following authors, contain examples of mainly Turkish and Arabic
compositions.

e Charbel Rouhana
o George Farah

e Ibrahim Ali Darwish Al-masri

http://www.maqamworld.com/
http://www.turath.org/

Chapter 3: General input and output 305

3 General input and output

This section deals with general LilyPond input and output issues, rather than specific notation.
3.1 Input structure
The main format of input for LilyPond are text files. By convention, these files end with .1y.

3.1.1 Structure of a score

A \score block must contain a single music expression delimited by curly brackets:

\score {

}

Note: There must be only one outer music expression in a \score block, and it must be
surrounded by curly brackets

This single music expression may be of any size, and may contain other music expressions to
any complexity. All of these examples are music expressions:

{c'4dc" c" c'?}

{

{c'4dc"c"c'?}

{d'4 4" 4' 4'}
}

()

)" 4

4\ y £)

@ A U2

eJ o o oo OO F
<<

\new Staff { c'4 c' ¢' c' }
\new Staff { d'4 4' 4' 4' }

>>
o)
-) .
(o C——F——
\\37 I ——
[y ¢ o o
0)
A
[{av W]

T

{
\new GrandStaff <<
\new StaffGroup <<
\new Staff { \flute }
\new Staff { \oboe }
>>
\new StaffGroup <<
\new Staff { \violinI }
\new Staff { \violinII }
>>
>>

Chapter 3: General input and output 306

Comments are one exception to this general rule. (For others see Section 3.1.3 [File structure],
page 307.) Both single-line comments and comments delimited by %{ .. %} may be placed
anywhere within an input file. They may be placed inside or outside a \score block, and inside
or outside the single music expression within a \score block.

See also

Learning Manual: Section “Working on input files” in Learning Manual, Section “Music
expressions explained” in Learning Manual, Section “Score is a (single) compound musical ex-
pression” in Learning Manual.

3.1.2 Multiple scores in a book

A document may contain multiple pieces of music and text. Examples of these are an etude
book, or an orchestral part with multiple movements. Each movement is entered with a \score
block,
\score {

..music..
}

and texts are entered with a \markup block,

\markup {

..text..
}

All the movements and texts which appear in the same .1y file will normally be typeset in
the form of a single output file.

\score {

}
\markup {

}

\score {

}

However, if you want multiple output files from the same .1y file, then you can add multiple
\book blocks, where each such \book block will result in a separate output. If you do not specify
any \book block in the file, LilyPond will implicitly treat the full file as a single \book block,
see Section 3.1.3 [File structure|, page 307. One important exception is within lilypond-book
documents, where you explicitly have to add a \book block, otherwise only the first \score or
\markup will appear in the output.

The header for each piece of music can be put inside the \score block. The piece name
from the header will be printed before each movement. The title for the entire book can be put
inside the \book, but if it is not present, the \header which is at the top of the file is inserted.

\header {

title = "Eight miniatures"
composer = "Igor Stravinsky"
b
\score {
\header { piece = "Romanze" }

}

Chapter 3: General input and output 307

\markup {

..text of second verse..
}
\markup {

..text of third verse..
}
\score {

\header { piece = "Menuetto" }

b

Pieces of music may be grouped into book parts using \bookpart blocks. Book parts are
separated by a page break, and can start with a title, like the book itself, by specifying a \header
block.

\bookpart {
\header {

}

title = "Book title"
subtitle = "First part"

\score { ... }

}
\bookpart {
\header {

}

subtitle = "Second part"

\score { ... }

}

3.1.3 File structure

A .1y file may contain any number of toplevel expressions, where a toplevel expression is one
of the following:

An output definition, such as \paper, \midi, and \layout. Such a definition at the toplevel
changes the default book-wide settings. If more than one such definition of the same type
is entered at the top level any definitions in the later expressions have precedence.

A direct scheme expression, such as #(set-default-paper-size "a7" 'landscape) or
#(ly:set-option 'point-and-click #f).

A \header block. This sets the global header block. This is the block containing the
definitions for book-wide settings, like composer, title, etc.

A \score block. This score will be collected with other toplevel scores, and combined as
a single \book. This behavior can be changed by setting the variable toplevel-score-
handler at toplevel. The default handler is defined in the init file ‘. ./scm/1ily.scm’.

A \book block logically combines multiple movements (i.e., multiple \score blocks) in one
document. If there are a number of \scores, one output file will be created for each \book
block, in which all corresponding movements are concatenated. The only reason to explicitly
specify \book blocks in a .1y file is if you wish to create multiple output files from a single
input file. One exception is within lilypond-book documents, where you explicitly have to
add a \book block if you want more than a single \score or \markup in the same example
This behavior can be changed by setting the variable toplevel-book-handler at toplevel.
The default handler is defined in the init file ‘. ./scm/1ily.scm’.

Chapter 3: General input and output 308

A \bookpart block. A book may be divided into several parts, using \bookpart blocks, in
order to ease the page breaking, or to use different \paper settings in different parts.
A compound music expression, such as
{c'44d" e'2}
This will add the piece in a \score and format it in a single book together with all other
toplevel \scores and music expressions. In other words, a file containing only the above
music expression will be translated into
\book {
\score {
\new Staff {
\new Voice {
{c'4d e'2}
}
}
}
\layout { }
\header { }
}
This behavior can be changed by setting the variable toplevel-music-handler at toplevel.
The default handler is defined in the init file ‘. ./scm/1ily.scm’.

A markup text, a verse for example
\markup {
2. The first line verse two.
}
Markup texts are rendered above, between or below the scores or music expressions, wher-
ever they appear.
A variable, such as
foo={cdded?’?
This can be used later on in the file by entering \foo. The name of a variable should have
alphabetic characters only; no numbers, underscores or dashes.

The following example shows three things that may be entered at toplevel

\layout {
% Don't justify the output
ragged-right = ##t

}
\header {

title = "Do-re-mi"
}

{c'4 d' e2 %}

At any point in a file, any of the following lexical instructions can be entered:

\version

\include

\sourcefilename

\sourcefileline

A single-line comment, introduced by a leading 7% sign.
A multi-line comment delimited by %{ .. %}.

Chapter 3: General input and output 309

See also

Learning Manual: Section “How LilyPond input files work” in Learning Manual.

3.2 Titles and headers

Almost all printed music includes a title and the composer’s name; some pieces include a lot
more information.

3.2.1 Creating titles

Titles are created for each \score block, as well as for the full input file (or \book block) and
book parts (created by \bookpart blocks).

The contents of the titles are taken from the \header blocks. The header block for a book
supports the following

dedication
The dedicatee of the music, centered at the top of the first page.

title The title of the music, centered just below the dedication.
subtitle Subtitle, centered below the title.

subsubtitle
Subsubtitle, centered below the subtitle.

poet Name of the poet, flush-left below the subsubtitle.

instrument
Name of the instrument, centered below the subsubtitle. Also centered at the top
of pages (other than the first page).

composer Name of the composer, flush-right below the subsubtitle.
meter Meter string, flush-left below the poet.

arranger Name of the arranger, flush-right below the composer.

piece Name of the piece, flush-left below the meter.
opus Name of the opus, flush-right below the arranger.
breakbefore

This forces the title to start on a new page (set to ##t or ##f).

copyright
Copyright notice, centered at the bottom of the first page. To insert the copyright
symbol, see Section 3.3.3 [Text encoding], page 321.

tagline Centered at the bottom of the last page.

Here is a demonstration of the fields available. Note that you may use any Section 1.8.2
[Formatting text], page 167, commands in the header.

\paper {
line-width = 9.0\cm
paper-height = 10.0\cm
}
\book {
\header {
dedication = "dedicated to me"

title = \markup \center-column { "Title first line" "Title second line,

Chapter 3: General input and output 310

longer" }

subtitle = "the subtitle,"

subsubtitle = #(string-append "subsubtitle LilyPond version "
(1ilypond-version))

poet = "Poet"
composer = \markup \center-column { "composer" \small "(1847-1973)" }
texttranslator = "Text Translator"

meter = \markup { \teeny "m" \tiny "e" \normalsize "t" \large "e" \huge
et }

arranger = \markup { \fontsize #8.5 "a" \fontsize #2.5 "r" \fontsize
#-2.5 "r" \fontsize #-5.3 "a" \fontsize #7.5 "nger" }

instrument = \markup \bold \italic "instrument"

piece = "Piece"

}

\score {
{c'1}
\header {
piece = '"piecel"
opus = "opusl"
}
}
\markup {
and now...
b
\score {
{c'1}
\header {
piece = '"piece2"
opus = "opus2"
+
}
3

Chapter 3: General input and output 311

dedicated to me

Title first line
Title second line, longer
the subtitle,
subsubtitle LilyPond version 2.12.3
Poet instrument composer
(1847-1973)

meteT Ei'rra:rlégia]r

piecel opusl

0

) 4

oJ -©

and now...

2 instrument

piece2 opus2

Music engraving by LilyPond 2.12.3—www.lilypond.org

As demonstrated before, you can use multiple \header blocks. When same fields appear in
different blocks, the latter is used. Here is a short example.

\header {
composer = "Composer"
}
\header {
piece = "Piece"
+
\score {
\new Staff { c'4 }
\header {
piece = "New piece"

}

% overwrite previous one

Chapter 3: General input and output 312

If you define the \header inside the \score block, then normally only the piece and opus
headers will be printed. Note that the music expression must come before the \header.

\score {
{ca}
\header {
title = "title" % not printed
piece "piece"
opus = "opus"

piece opus

You may change this behavior (and print all the headers when defining \header inside \score)
by using
\paper{
print-all-headers = ##t
}

The default footer is empty, except for the first page, where the copyright field from \header
is inserted, and the last page, where tagline from \header is added. The default tagline is
“Music engraving by LilyPond (version)”.!

Headers may be completely removed by setting them to false.

\header {
tagline = ##f
composer = ##f

}
3.2.2 Custom titles

A more advanced option is to change the definitions of the following variables in the \paper
block. The init file ‘. ./1ly/titling-init.1ly’ lists the default layout.

bookTitleMarkup
This is the title added at the top of the entire output document. Typically, it has
the composer and the title of the piece

scoreTitleMarkup
This is the title put over a \score block. Typically, it has the name of the movement
(piece field).

oddHeaderMarkup
This is the page header for odd-numbered pages.

evenHeaderMarkup
This is the page header for even-numbered pages. If unspecified, the odd header is
used instead.

By default, headers are defined such that the page number is on the outside edge,
and the instrument is centered.

1 Nicely printed parts are good PR for us, so please leave the tagline if you can.

Chapter 3: General input and output 313

oddFooterMarkup
This is the page footer for odd-numbered pages.

evenFooterMarkup
This is the page footer for even-numbered pages. If unspecified, the odd header is
used instead.

By default, the footer has the copyright notice on the first, and the tagline on the
last page.

The following definition will put the title flush left, and the composer flush right on a single
line.

\paper {
bookTitleMarkup = \markup {
\fill-line {
\fromproperty #'header:title
\fromproperty #'header:composer
}
b
b

3.2.3 Reference to page numbers

A particular place of a score can be marked using the \label command, either at top-level or
inside music. This label can then be referred to in a markup, to get the number of the page
where the marked point is placed, using the \page-ref markup command.

\header { tagline = ##f }
\book {
\label #'firstScore
\score {
{
c'l
\pageBreak \mark A \label #'markA
c '
}
}

\markup { The first score begins on page \page-ref #'firstScore "O" "?" }
\markup { Mark A is on page \page-ref #'markA "O" "?" }

N @]

>

Chapter 3: General input and output 314
2

P P>

==
The first score begins on page 1

Mark A is on page 2

The \page-ref markup command takes three arguments:
1. the label, a scheme symbol, eg. #'firstScore;
2. a markup that will be used as a gauge to estimate the dimensions of the markup;

3. a markup that will be used in place of the page number if the label is not known;

The reason why a gauge is needed is that, at the time markups are interpreted, the page
breaking has not yet occurred, so the page numbers are not yet known. To work around this
issue, the actual markup interpretation is delayed to a later time; however, the dimensions of
the markup have to be known before, so a gauge is used to decide these dimensions. If the book
has between 10 and 99 pages, it may be "00", ie. a two digit number.

Predefined commands
\label, \page-ref.

3.2.4 Table of contents

A table of contents is included using the \markuplines \table-of-contents command. The
elements which should appear in the table of contents are entered with the \tocItem command,
which may be used either at top-level, or inside a music expression.

\markuplines \table-of-contents
\pageBreak

\tocItem \markup "First score"
\score {
{
c' ho...
\tocItem \markup "Some particular point in the first score"
a' % ...
b
b

\tocItem \markup "Second score"
\score {
{
e' %ho...
}
}

The markups which are used to format the table of contents are defined in the \paper block.
The default ones are tocTitleMarkup, for formatting the title of the table, and tocItemMarkup,
for formatting the toc elements, composed of the element title and page number. These variables
may be changed by the user:

\paper {
%% Translate the toc title into French:
tocTitleMarkup = \markup \huge \column {
\fill-line { \null "Table des matiéres" \null }

Chapter 3: General input and output 315

\hspace #1
b
%% use larger font size
tocItemMarkup = \markup \large \fill-line {
\fromproperty #'toc:text \fromproperty #'toc:page
}
b

Note how the toc element text and page number are referred to in the tocItemMarkup
definition.

New commands and markups may also be defined to build more elaborated table of contents:
e first, define a new markup variable in the \paper block
e then, define a music function which aims at adding a toc element using this markup paper
variable.
In the following example, a new style is defined for entering act names in the table of contents

of an opera:

\paper {
tocActMarkup = \markup \large \column {
\hspace #1
\fill-line { \null \italic \fromproperty #'toc:text \null }
\hspace #1
}
}

tocAct =

#(define-music-function (parser location text) (markup?)
(add-toc-item! 'tocActMarkup text))

Table of Contents

Atto Primo

Coro. Viva il nostro Alcide
Cesare. Presti omai 1'Egizzia terra

Atto Secondo

Sinfonia
Cleopatra. V'adoro, pupille, saette d'Amore

See also
Init files: ‘. ./ly/toc-init.1ly’.

Predefined commands
\table-of-contents, \tocItem.

Chapter 3: General input and output 316

3.3 Working with input files
3.3.1 Including LilyPond files

A large project may be split up into separate files. To refer to another file, use
\include "otherfile.ly"

The line \include "otherfile.ly" is equivalent to pasting the contents of ‘otherfile.ly’
into the current file at the place where the \include appears. For example, in a large project
you might write separate files for each instrument part and create a “full score” file which
brings together the individual instrument files. Normally the included file will define a number
of variables which then become available for use in the full score file. Tagged sections can
be marked in included files to assist in making them usable in different places in a score, see
Section 3.3.2 [Different editions from one source], page 317.

Files in the current working directory may be referenced by specifying just the file name
after the \include command. Files in other locations may be included by giving either a full
path reference or a relative path reference (but use the UNIX forward slash, /, rather than the
DOS/Windows back slash, \, as the directory separator.) For example, if ‘stuff.ly’ is located
one directory higher than the current working directory, use

\include "../stuff.ly"

or if the included orchestral parts files are all located in a subdirectory called ‘parts’ within the
current directory, use

\include "parts/VI.1ly"
\include "parts/VII.1ly"
. etc

Files which are to be included can also contain \include statements of their own. By default,
these second-level \include statements are not interpreted until they have been brought into the
main file, so the file names they specify must all be relative to the directory containing the main
file, not the directory containing the included file. However, this behavior can be changed by
passing the option -drelative-includes option at the command line (or by adding #(1y:set-
option 'relative-includes #t) at the top of the main input file). With relative-includes
set, the path for each \include command will be taken relative to the file containing that
command. This behavior is recommended and it will become the default behavior in a future
version of lilypond.

Files can also be included from a directory in a search path specified as an option when
invoking LilyPond from the command line. The included files are then specified using just their
file name. For example, to compile ‘main.ly’ which includes files located in a subdirectory called
‘parts’ by this method, cd to the directory containing ‘main.ly’ and enter

lilypond --include=parts main.ly
and in main.ly write

\include "VI.ly"
\include "VII.ly"
. etc

Files which are to be included in many scores may be placed in the LilyPond directory
‘../1y’. (The location of this directory is installation-dependent - see Section “Other sources
of information” in Learning Manual). These files can then be included simply by naming them
on an \include statement. This is how the language-dependent files like ‘english.ly’ are
included.

LilyPond includes a number of files by default when you start the program. These includes

are not apparent to the user, but the files may be identified by running 1ilypond --verbose
from the command line. This will display a list of paths and files that LilyPond uses, along with

Chapter 3: General input and output 317

much other information. Alternatively, the more important of these files are discussed in Section
“Other sources of information” in Learning Manual. These files may be edited, but changes to
them will be lost on installing a new version of LilyPond.

Some simple examples of using \include are shown in Section “Scores and parts” in Learning
Manual.

See also

Learning Manual: Section “Other sources of information” in Learning Manual, Section
“Scores and parts” in Learning Manual.

Known issues and warnings

If an included file is given a name which is the same as one in LilyPond’s installation files,
LilyPond’s file from the installation files takes precedence.

3.3.2 Different editions from one source

Several mechanisms are available to facilitate the generation of different versions of a score
from the same music source. Variables are perhaps most useful for combining lengthy sections
of music and/or annotation in various ways, while tags are more useful for selecting one from
several alternative shorter sections of music. Whichever method is used, separating the notation
from the structure of the score will make it easier to change the structure while leaving the
notation untouched.

Using variables

If sections of the music are defined in variables they can be reused in different parts of the score,
see Section “Organizing pieces with variables” in Learning Manual. For example, an a cappella
vocal score frequently includes a piano reduction of the parts for rehearsal purposes which is
identical to the vocal music, so the music need be entered only once. Music from two variables
may be combined on one staff, see [Automatic part combining|, page 116. Here is an example:

sopranoMusic = \relative c'' { a4 b ¢ b8(a)}
altoMusic = \relative g' { e4 e e £ }
tenorMusic = \relative c¢c' { c4 b e d8(c) }
bassMusic = \relative c¢' { a4 gis a d, }
alllyrics = \lyricmode {King of glo -- ry }
<<
\new Staff = "Soprano" \sopranoMusic
\new Lyrics \allLyrics
\new Staff = "Alto" \altoMusic
\new Lyrics \allLyrics
\new Staff = "Tenor" {
\clef "treble_8"
\tenorMusic
}
\new Lyrics \allLyrics
\new Staff = "Bass" {
\clef "bass"
\bassMusic
}
\new Lyrics \allLyrics
\new PianoStaff <<
\new Staff = "RH" {
\set Staff.printPartCombineTexts = ##f

Chapter 3: General input and output 318

\partcombine
\sopranoMusic
\altoMusic
}
\new Staff = "LH" {
\set Staff.printPartCombineTexts = ##f
\clef "bass"
\partcombine
\tenorMusic
\bassMusic

King of glory

0}

)’ 4
s
g e e
King of glory

é
[l

1

King of glory

| | | —
"4 | | |

W&#hg:ﬁ

d A W2 I |

Separate scores showing just the vocal parts or just the piano part can be produced by
changing just the structural statements, leaving the musical notation unchanged.

For lengthy scores, the variable definitions may be placed in separate files which are then
included, see Section 3.3.1 [Including LilyPond files], page 316.
Using tags

The \tag #' partA command marks a music expression with the name partA. Expressions tagged
in this way can be selected or filtered out by name later, using either \keepWithTag #'name or
\removeWithTag #'name. The result of applying these filters to tagged music is as follows:

Filter Result

Chapter 3: General input and output

Tagged music preceded by \keepWithTag

#'name

Tagged music preceded by \removeWithTag

#'name

Tagged music not

preceded by

\keepWithTag or \removeWithTag

either

319

Untagged music and music tagged with name
is included; music tagged with any other tag
name is excluded.
Untagged music and music tagged with any
tag name other than name is included; music
tagged with name is excluded.

All tagged and untagged music is included.

The arguments of the \tag, \keepWithTag and \removeWithTag commands should be a
symbol (such as #'score or #'part), followed by a music expression.

In the following example, we see two versions of a piece of music, one showing trills with the
usual notation, and one with trills explicitly expanded:

music = \relative g' {

g8. c32 d

\tag #'trills {d8.\trill }
\tag #'expand {\repeat unfold 3 {e32 d} }

c32 d
}
\score {
\keepWithTag #'trills \music
}
\score {
\keepWithTag #'expand \music
}
0 4r
g" C e o—
oJ
o)
:éﬁf_'—r'_'_'_-_' L
o ;

Alternatively, it is sometimes easier to exclude sections of music:

music = \relative g' {

g8. c32 d

\tag #'trills {d8.\trill }
\tag #'expand {\repeat unfold 3 {e32 d} }

c32 d
}

\score {
\removeWithTag #
\music

}

\score {
\removeWithTag #
\music

}

'expand

'trills

Chapter 3: General input and output 320

[y

0

S —
:@r,u .

Tagged filtering can be applied to articulations, texts, etc. by prepending
-\tag #'your-tag
to an articulation. For example, this would define a note with a conditional fingering indica-
tion and a note with a conditional annotation:
cl-\tag #'finger "4
cl-\tag #'warn ~"Watch!"
Multiple tags may be placed on expressions with multiple \tag entries:

music = \relative c'' {
\tag #'a \tag #'both { a a a a
\tag #'b \tag #'both { b b b b
}
<<
\keepWithTag #'a \music
\keepWithTag #'b \music
\keepWithTag #'both \music
>>

Multiple \removeWithTag filters may be applied to a single music expression to remove
several differently named tagged sections:

music = \relative c'' {
\tag #'A { aaaal
\tag #'B{ bbbb}
\tag #'C { c c c c }
\tag #'D { dddd}

}

{
\removeWithTag #'
\removeWithTag #
\music

¥

Chapter 3: General input and output 321

Two or more \keepWithTag filters applied to a single music expression will cause all tagged
sections to be removed, as the first filter will remove all tagged sections except the one named,
and the second filter will remove even that tagged section.

See also
Learning Manual: Section “Organizing pieces with variables” in Learning Manual.

Notation Reference: [Automatic part combining], page 116, Section 3.3.1 [Including LilyPond
files], page 316.

3.3.3 Text encoding

LilyPond uses the character repertoire defined by the Unicode consortium and ISO/IEC 10646.
This defines a unique name and code point for the character sets used in virtually all modern
languages and many others too. Unicode can be implemented using several different encodings.
LilyPond uses the UTF-8 encoding (UTF stands for Unicode Transformation Format) which
represents all common Latin characters in one byte, and represents other characters using a
variable length format of up to four bytes.

The actual appearance of the characters is determined by the glyphs defined in the particular
fonts available - a font defines the mapping of a subset of the Unicode code points to glyphs.
LilyPond uses the Pango library to layout and render multi-lingual texts.

Lilypond does not perform any input-encoding conversions. This means that any text, be
it title, lyric text, or musical instruction containing non-ASCII characters, must be encoded in
UTF-8. The easiest way to enter such text is by using a Unicode-aware editor and saving the
file with UTF-8 encoding. Most popular modern editors have UTF-8 support, for example, vim,
Emacs, jEdit, and GEdit do. All MS Windows systems later than NT use Unicode as their
native character encoding, so even Notepad can edit and save a file in UTF-8 format. A more
functional alternative for Windows is BabelPad.

If a LilyPond input file containing a non-ASCII character is not saved in UTF-8 format the
error message

FT_Get_Glyph_Name () error: invalid argument
will be generated.

Here is an example showing Cyrillic, Hebrew and Portuguese text:

0) .
)" 4 |
7\ r) |
[(v YA W ~
ANV = [, e 7 =
[y, < [
HbiaraTa mrouis Gelrre macTJHBA, Y€ MyX'bT, KOUTO
Nt 9D DND yinp'? 'R NXIN TOp
a vo - cé uma can-cao legal

To enter a single character for which the Unicode escape sequence is known but which is
not available in the editor being used, use \char ##xhhhh within a \markup block, where hhhh
is the hexadecimal code for the character required. For example, \char ##x03BE enters the
Unicode U+03BE character, which has the Unicode name “Greek Small Letter Xi”. Any Unicode
hexadecimal code may be substituted, and if all special characters are entered in this format it
is not necessary to save the input file in UTF-8 format. Of course, a font containing all such
encoded characters must be installed and available to LilyPond.

The following example shows UTF-8 coded characters being used in four places — in a re-
hearsal mark, as articulation text, in lyrics and as stand-alone text below the score:

Chapter 3: General input and output 322

\score {
\relative c'' {
cl \mark \markup { \char ##x03EE }
ci_\markup { \tiny { \char ##x03B1 " to " \char ##x03C9 } }
}
\addlyrics { 0 \markup { \concat{ Ph \char ##x0153 be! } } }
}
\markup { "Copyright 2008--2009" \char ##x00A9 }

T

0

)" 4

£\ o O [Q)

[fan Y W]

SV

[Y) o to W
O Phoebe!

Copyright 2008--2009 ©

To enter the copyright sign in the copyright notice use:
\header {

copyright = \markup { \char ##x00A9 "2008" }
}

3.3.4 Displaying LilyPond notation
Displaying a music expression in LilyPond notation can be done using the music function
\displayLilyMusic. For example,

' \displayLilyMusic \transpose c a, { c e g a bes }
}
will display
{ a, cis e fis g }
By default, LilyPond will print these messages to the console along with all the other mes-

sages. To split up these messages and save the results of \display{STUFF}, redirect the output
to a file.

lilypond file.ly >display.txt
3.4 Controlling output

3.4.1 Extracting fragments of music

It is possible to quote small fragments of a large score directly from the output. This can be
compared to clipping a piece of a paper score with scissors.

This is done by defining the measures that need to be cut out separately. For example,
including the following definition

\layout {
clip-regions
= #(list
(cons
(make-rhythmic-location 5 1 2)
(make-rhythmic-location 7 3 4)))

Chapter 3: General input and output 323

will extract a fragment starting halfway the fifth measure, ending in the seventh measure. The
meaning of 5 1 2 is: after a 1/2 note in measure 5, and 7 3 4 after 3 quarter notes in measure 7.

More clip regions can be defined by adding more pairs of rhythmic-locations to the list.

In order to use this feature, LilyPond must be invoked with -dclip-systems. The clips are
output as EPS files, and are converted to PDF and PNG if these formats are switched on as
well.

For more information on output formats, see Section “Invoking lilypond” in Application
Usage.

3.4.2 Skipping corrected music

When entering or copying music, usually only the music near the end (where you are adding
notes) is interesting to view and correct. To speed up this correction process, it is possible to
skip typesetting of all but the last few measures. This is achieved by putting

showLastLength = R1x*5
\score { ... }

in your source file. This will render only the last 5 measures (assuming 4/4 time signature) of
every \score in the input file. For longer pieces, rendering only a small part is often an order of
magnitude quicker than rendering it completely. When working on the beginning of a score you
have already typeset (e.g. to add a new part), the showFirstLength property may be useful as
well.

Skipping parts of a score can be controlled in a more fine-grained fashion with the property
Score.skipTypesetting. When it is set, no typesetting is performed at all.

This property is also used to control output to the MIDI file. Note that it skips all events,
including tempo and instrument changes. You have been warned.

\relative c'' {
c8 d

\set Score.skipTypesetting = ##t
eeeeeeccee

\set Score.skipTypesetting = ##f
cdbbesagc2?}

n I -
& Er’ = z
N\ — =

¢J

In polyphonic music, Score.skipTypesetting will affect all voices and staves, saving even
more time.

3.5 MIDI output

MIDI (Musical Instrument Digital Interface) is a standard for connecting and controlling digital
instruments. A MIDI file is a series of notes in a number of tracks. It is not an actual sound
file; you need special software to translate between the series of notes and actual sounds.

Pieces of music can be converted to MIDI files, so you can listen to what was entered. This is
convenient for checking the music; octaves that are off or accidentals that were mistyped stand
out very much when listening to the MIDI output.

The midi output allocates a channel for each staff, and one for global settings. Therefore the
midi file should not have more than 15 staves (or 14 if you do not use drums). Other staves will
remain silent.

Chapter 3: General input and output 324

3.5.1 Creating MIDI files

To create a MIDI output file from a LilyPond input file, add a \midi block to a score, for
example,

\score {

...music...

\midi { }
}

If there is a \midi block in a \score with no \layout block, only MIDI output will be
produced. When notation is needed too, a \layout block must be also be present.

\score {
...music...
\midi { }
\layout { }

}

Pitches, rhythms, ties, dynamics, and tempo changes are interpreted and translated correctly
to the MIDI output. Dynamic marks, crescendi and decrescendi translate into MIDI volume lev-
els. Dynamic marks translate to a fixed fraction of the available MIDI volume range. Crescendi
and decrescendi make the volume vary linearly between their two extremes. The effect of dy-
namic markings on the MIDI output can be removed completely, see Section 3.5.2 [MIDI block],
page 326.

The initial tempo and later tempo changes can be specified with the \tempo command within
the music notation. These are reflected in tempo changes in the MIDI output. This command
will normally result in the metronome mark being printed, but this can be suppressed, see
[Metronome marks], page 137. An alternative way of specifying the inital or overall MIDI
tempo is described below, see Section 3.5.2 [MIDI block], page 326.

Instrument names

The MIDI instrument to be used is specified by setting the Staff.midiInstrument property
to the instrument name. The name should be chosen from the list in Section B.4 [MIDI instru-
ments|, page 444.

\new Staff {
\set Staff.midiInstrument = #"glockenspiel"

...notes...

}

\new Staff \with {midiInstrument = #"cello"} {
...notes...

}

If the selected instrument does not exactly match an instrument from the list of MIDI in-
struments, the Grand Piano ("acoustic grand") instrument is used.

Selected Snippets
Changing MIDI output to one channel per voice

When outputting MIDI, the default behavior is for each staff to represent one MIDI channel,
with all the voices on a staff amalgamated. This minimizes the risk of running out of MIDI
channels, since there are only 16 available per track.

However, by moving the Staff_performer to the Voice context, each voice on a staff can
have its own MIDI channel, as is demonstrated by the following example: despite being on the
same staff, two MIDI channels are created, each with a different midiInstrument.

Chapter 3: General input and output 325

\score {
\new Staff <<

\new Voice \relative c''' {
\set midiInstrument = #"flute"
\voiceOne
\key g \major
\time 2/2
r2 g-"Flute" ~
g fis ~
fis4 g8 fis e2 7
e4 d8 cis d2

}

\new Voice \relative c'' {
\set midiInstrument = #"clarinet"
\voiceTwo
bl-"Clarinet"
a2. b8 a
g2. fis8 e
fis2 r

}

>>
\layout { }
\midi {
\context {
\Staff
\remove "Staff_performer"
}
\context {
\Voice
\consists "Staff_performer"
}
\context {
\Score
tempoWholesPerMinute = #(ly:make-moment 72 2)
}
}
}

Flute
04 = d—d J/\J_Dal |
o — 1~ =
o Clarinet | =T frf -

Known issues and warnings

Changes in the MIDI volume take place only on starting a note, so crescendi and decrescendi
cannot affect the volume of a single note.

Not all midi players correctly handle tempo changes in the midi output. Players that are
known to work include MS Windows Media Player and timidity.

http://timidity.sourceforge.net/

Chapter 3: General input and output 326

3.5.2 MIDI block

A \midi block must appear within a score block if MIDI output is required. It is analogous
to the layout block, but somewhat simpler. Often, the \midi block is left empty, but it can
contain context rearrangements, new context definitions or code to set the values of properties.
For example, the following will set the initial tempo exported to a MIDI file without causing a
tempo indication to be printed:

\score {
...music...
\midi {
\context {
\Score
tempoWholesPerMinute = #(ly:make-moment 72 4)
}
}
}

In this example the tempo is set to 72 quarter note beats per minute. This kind of tempo
specification cannot take a dotted note length as an argument. If one is required, break the
dotted note into smaller units. For example, a tempo of 90 dotted quarter notes per minute can
be specified as 270 eighth notes per minute:
tempoWholesPerMinute = #(ly:make-moment 270 8)

Context definitions follow precisely the same syntax as those within a \layout block. Trans-
lation modules for sound are called performers. The contexts for MIDI output are defined in
‘../ly/performer-init.1ly’, see Section “Other sources of information” in Learning Manual.
For example, to remove the effect of dynamics from the MIDI output, insert the following lines
in the \midi{ } block.

\midi {
\context {
\Voice
\remove "Dynamic_performer"

}
}

MIDI output is created only when a \midi block is included within a score block defined with
a \score command. If it is placed within an explicitly instantiated score context (i.e. within
a \new Score block) the file will fail. To solve this, enclose the \new Score and the \midi
commands in a \score block.

\score {
\new Score { ...notes... }
\midi { }

}

3.5.3 What goes into the MIDI output?

Supported in MIDI

The following items of notation are reflected in the MIDI output:
e Pitches
e Microtones (See [Accidentals], page 4. Rendering needs a player that supports pitch bend.)
e Chords entered as chord names

e Rhythms entered as note durations, including tuplets

Chapter 3: General input and output 327

e Tremolos entered without ‘: [number|’

e Ties

e Dynamic marks

e Crescendi, decrescendi over multiple notes

e Tempo changes entered with a tempo marking

e Lyrics

Unsupported in MIDI

The following items of notation have no effect on the MIDI output:
e Rhythms entered as annotations, e.g. swing
e Tempo changes entered as annotations with no tempo marking
e Staccato and other articulations and ornamentations
e Slurs and Phrasing slurs
e Crescendi, decrescendi over a single note
e Tremolos entered with ‘:[number]’
e Figured bass

e Microtonal chords

3.5.4 Repeats in MIDI

With a few minor additions, all types of repeats can be represented in the MIDI output. This
is achieved by applying the \unfoldRepeats music function. This function changes all repeats
to unfold repeats.

\unfoldRepeats {
\repeat tremolo 8 {c'32 e' }
\repeat percent 2 { c''8 4'' }
\repeat volta 2 {c'4 d4' e' f'}
\alternative {
{g a a' g}
{f' e'" d' ¢' }

oo -

[Y) - &

When creating a score file using \unfoldRepeats for MIDI, it is necessary to make two
\score blocks: one for MIDI (with unfolded repeats) and one for notation (with volta, tremolo,
and percent repeats). For example,

\score {
..music..
\layout { .. }

Chapter 3: General input and output 328

}

\score {
\unfoldRepeats ..music..
\midi { .. }

}

3.5.5 Controlling MIDI dynamics

MIDI dynamics are implemented by the Dynamic_performer which lives by default in the Voice
context. It is possible to control the overall MIDI volume, the relative volume of dynamic
markings and the relative volume of different instruments.

Dynamic marks

Dynamic marks are translated to a fixed fraction of the available MIDI volume range. The
default fractions range from 0.25 for ppppp to 0.95 for fffff. The set of dynamic marks and the
associated fractions can be seen in ‘. ./scm/midi.scm’, see Section “Other sources of informa-
tion” in Learning Manual. This set of fractions may be changed or extended by providing a
function which takes a dynamic mark as its argument and returns the required fraction, and
setting Score.dynamicAbsoluteVolumeFunction to this function.

For example, if a rinforzando dynamic marking, \rfz, is required, this will not by default
have any effect on the MIDI volume, as this dynamic marking is not included in the default set.
Similarly, if a new dynamic marking has been defined with make-dynamic-script that too will
not be included in the default set. The following example shows how the MIDI volume for such
dynamic markings might be added. The Scheme function sets the fraction to 0.9 if a dynamic
mark of rfz is found, or calls the default function otherwise.

#(define (myDynamics dynamic)
(if (equal? dynamic "rfz")
0.9
(default-dynamic-absolute-volume dynamic)))

\score {
\new Staff {
\set Staff.midiInstrument = #"cello"
\set Score.dynamicAbsoluteVolumeFunction = #myDynamics
\new Voice {
\relative c'' {
a\pp b c-\rfz
}
}
}
\layout {3}
\midi {}

Alternatively, if the whole table of fractions needs to be redefined, it would be better to use
the default-dynamic-absolute-volume procedure in ‘. ./scm/midi.scm’ and the associated table
as a model. The final example in this section shows how this might be done.

Chapter 3: General input and output 329

Overall MIDI volume

The minimum and maximum overall volume of MIDI dynamic markings is controlled by setting
the properties midiMinimumVolume and midiMaximumVolume at the Score level. These proper-
ties have an effect only on dynamic marks, so if they are to apply from the start of the score
a dynamic mark must be placed there. The fraction corresponding to each dynamic mark is
modified with this formula

midiMinimumVolume + (midiMaximumVolume - midiMinimumVolume) * fraction

In the following example the dynamic range of the overall MIDI volume is limited to the
range 0.2 - 0.5.

\score {
<<
\new Staff {
\key g \major
\time 2/2
\set Staff.midiInstrument = #"flute"
\new Voice \relative c''' {
r2 g\mp g fis ~
fis4d g8 fis e2 ~
e4 d8 cis d2
}
}
\new Staff {
\key g \major
\set Staff.midiInstrument = #"clarinet"
\new Voice \relative c'' {
bi\p a2. b8 a
g2. fis8 e
fis2 r
}
}
>>
\layout { }
\midi {
\context {
\Score
tempoWholesPerMinute =
midiMinimumVolume = #O0.
midiMaximumVolume = #O.

}

(ly:make-moment 72 2)

o N H

}
+

‘)
:

I

]

e v =

Y (0}
l! /

P AP
3
|

0
y
Jl

g~

Chapter 3: General input and output 330

Equalizing different instruments (i)

If the minimum and maximum MIDI volume properties are set in the Staff context the relative
volumes of the MIDI instruments can be controlled. This gives a basic instrument equalizer,
which can enhance the quality of the MIDI output remarkably.

In this example the volume of the clarinet is reduced relative to the volume of the flute.
There must be a dynamic mark on the first note of each instrument for this to work correctly.

\score {
<<
\new Staff {
\key g \major
\time 2/2
\set Staff.midiInstrument = #"flute"
\set Staff.midiMinimumVolume = #0.7
\set Staff.midiMaximumVolume = #0.9
\new Voice \relative c''' {
r2 g\mp g fis ~
fis4 g8 fis e2 7
ed d8 cis d2
}
}
\new Staff {
\key g \major
\set Staff.midiInstrument = #"clarinet"
\set Staff.midiMinimumVolume = #0.3
\set Staff.midiMaximumVolume = #0.6
\new Voice \relative c'' {
bi\p a2. b8 a
g2. fis8 e
fis2 r
}
}
>>
\layout { }
\midi {
\context {
\Score
tempoWholesPerMinute = #(ly:make-moment 72 2)
}
}
}

‘)
:

I

]

Y (0}
l! /

P AP
N

0
y
Jl

g~

Chapter 3: General input and output 331

Equalizing different instruments (ii)

If the MIDI minimum and maximum volume properties are not set LilyPond will, by default,
apply a small degree of equalization to a few instruments. The instruments and the equalization
applied are shown in the table instrument-equalizer-alist in ‘. ./scm/midi.scm’.

This basic default equalizer can be replaced by setting instrumentEqualizer in the Score
context to a new Scheme procedure which accepts a MIDI instrument name as its only argu-
ment and returns a pair of fractions giving the minimum and maximum volumes to be applied
to that instrument. This replacement is done in the same way as shown for resetting the
dynamicAbsoluteVolumeFunction at the start of this section. The default equalizer, default-
instrument-equalizer, in ‘. ./scm/midi.scm’ shows how such a procedure might be written.

The following example sets the relative flute and clarinet volumes to the same values as the
previous example.

#(define my-instrument-equalizer-alist '())

#(set! my-instrument-equalizer-alist
(append
'(
("flute" . (0.7 . 0.9))
("clarinet" . (0.3 . 0.6)))
my-instrument-equalizer-alist))

#(define (my-instrument-equalizer s)
(let ((entry (assoc s my-instrument-equalizer-alist)))
(if entry
(cdr entry))))

\score {
<<
\new Staff {
\key g \major
\time 2/2
\set Score.instrumentEqualizer = #my-instrument-equalizer
\set Staff.midiInstrument = #"flute"
\new Voice \relative c''' {
r2 g\mp g fis ~
fis4 g8 fis e2 7
ed d8 cis d2
}
}
\new Staff {
\key g \major
\set Staff.midiInstrument = #"clarinet"
\new Voice \relative c'' {
bi\p a2. b8 a
g2. fis8 e
fis2 r
}
}
>>
\layout { }
\midi {

Chapter 3: General input and output 332

\context {
\Score
tempoWholesPerMinute = #(ly:make-moment 72 2)
X
b
}

ll
h

2
E
=
\

I

#
il

L (D=
A |7

L4

p

'?___
N
i

P ol

3.5.6 Percussion in MIDI

Percussion instruments are generally notated in a DrumStaff context and when notated in this
way they are outputted correctly to MIDI channel 10, but some pitched percussion instruments,
like the xylophone, marimba, vibraphone, timpani, etc., are treated like “normal” instruments
and music for these instruments should be entered in a normal Staff context, not a DrumStaff
context, to obtain the correct MIDI output.

Some non-pitched percussion sounds included in the general MIDI standard, like melodic
tom, taiko drum, synth drum, etc., cannot be reached via MIDI channel 10, so the notation
for such instruments should also be entered in a normal Staff context, using suitable normal
pitches.

Many percussion instruments are not included in the general MIDI standard, e.g. castanets.
The easiest, although unsatisfactory, method of producing some MIDI output when writing for
such instruments is to substitute the nearest sound from the standard set.

Known issues and warnings

Because the general MIDI standard does not contain rim shots, the sidestick is used for this
purpose instead.

Chapter 4: Spacing issues 333

4 Spacing issues

The global paper layout is determined by three factors: the page layout, the line breaks, and
the spacing. These all influence each other. The choice of spacing determines how densely each
system of music is set. This influences where line breaks are chosen, and thus ultimately, how
many pages a piece of music takes.

Globally speaking, this procedure happens in four steps: first, flexible distances (‘springs’)
are chosen, based on durations. All possible line breaking combinations are tried, and a ‘badness’
score is calculated for each. Then the height of each possible system is estimated. Finally, a
page breaking and line breaking combination is chosen so that neither the horizontal nor the
vertical spacing is too cramped or stretched.

Settings which influence layout may be placed in two blocks. The \paper {...} block is
placed outside any \score {. ..} blocks and contains settings that relate to the entire document.
The \layout {...} block is placed within a \score {...} block and contains settings for that
particular score. If you have only one \score {...} block the two have the same effect. In
general the commands shown in this chapter can be placed in either.

4.1 Paper and pages

This section deals with the boundaries that define the area within which music can be printed.

4.1.1 Paper size

Two functions are available for changing the paper size: set-default-paper-size and set-
paper-size. set-default-paper-size must be placed in the toplevel scope, and set-paper-
size must be placed in a \paper block:
#(set-default-paper-size "a4")
\paper {

#(set-paper-size "a4")
}
set-default-paper-size sets the size of all pages, whereas set-paper-size only sets the size
of the pages that the \paper block applies to. For example, if the \paper block is at the top
of the file, then it will apply the paper size to all pages. If the \paper block is inside a \book,
then the paper size will only apply to that book.

Common paper sizes are available, including a4, letter, legal, and 11x17 (also known as
tabloid). Many more paper sizes are supported by default. For details, see ‘scm/paper.scm’,
and search for the definition of paper-alist.

[Note: The default paper size is a4. j

Extra sizes may be added by editing the definition of paper-alist in the initialization file
‘scm/paper.scm’, however they will be overridden on a subsequent install.

If the symbol 'landscape is supplied as an argument to set-default-paper-size, pages
will be rotated by 90 degrees, and wider line widths will be set accordingly.

#(set-default-paper-size "a6" 'landscape)

Setting the paper size will adjust a number of \paper variables, such as margins. To use a
particular paper size with altered \paper variables, set the paper size before setting the variables.
See also

Installed Files: ‘scm/paper.scm’.

Snippets: Section “Spacing” in Snippets.

Chapter 4: Spacing issues 334

4.1.2 Page formatting

Margins, headers, and footers and other layout variables are automatically set according to the
paper size.

This section lists and describes a number of paper variables that may be altered.

Vertical dimensions

These variables are used to set different vertical dimensions on a page:

after-title-space
The amount of space between the title and the first system. Default: 5\mm.

before-title-space
Amount of space between the last system of the previous piece and the title of the
next. Default: 10\mm.

between-system-padding
The minimum amount of white space that will always be present between the
bottom-most symbol of one system, and the top-most of the next system. Default:
4\mm.

Increasing this will put systems whose bounding boxes almost touch farther apart.

between-system-space
The distance between systems. It is the ideal distance between the center of the
bottom staff of one system and the center of the top staff of the next system. Default:
20\mm.

Increasing this value will provide a more even appearance of the page at the cost of
using more vertical space.

between-title-space
Amount of space between consecutive titles (e.g., the title of the book and the title
of a piece). Default: 2\mm.

bottom-margin
The margin between footer and bottom of the page. Default: 6\mm.

foot-separation
Distance between the bottom-most music system and the page footer. Default:
4\mm.

head-separation
Distance between the top-most music system and the page header. Default: 4\mm.

page-top-space
Distance from the top of the printable area to the center of the first staff. This only
works for staves that are vertically small. Big staves are set with the top of their
bounding box aligned to the top of the printable area. Default: 12\mm.

paper-height
The height of the page. Default: the height of the current paper size. For details,
see Section 4.1.1 [Paper size], page 333.

top-margin
The margin between header and top of the page. Default: 5\mm.

Chapter 4: Spacing issues 335

Selected Snippets

The header and footer are created by the functions make-footer and make-header, defined in
\paper. The default implementations are in ly /paper-defaults.ly and ly/titling-init.ly.

The page layout itself is done by two functions in the \paper block, page-music-height and
page-make-stencil. The former tells the line-breaking algorithm how much space can be spent
on a page, the latter creates the actual page given the system to put on it.

You can define paper block values in Scheme. In that case mm, in, pt, and cm are variables
defined in paper-defaults.ly with values in millimeters. That is why the value 2 ¢cm must be
multiplied in the example

\paper {
#(define bottom-margin (* 2 cm))
}

Example:

\paper{
paper-width = 2\cm
top-margin = 3\cm
bottom-margin = 3\cm
ragged-last-bottom = ##t

This second example centers page numbers at the bottom of every page.

\paper {

print-page-number = ##t

print-first-page-number = ##t

oddHeaderMarkup = \markup \fill-line { " " }

evenHeaderMarkup = \markup \fill-line { " " }

oddFooterMarkup = \markup { \fill-line {
\bold \fontsize #3 \on-the-fly #print-page-number-check-first
\fromproperty #'page:page-number-string } }

evenFooterMarkup = \markup { \fill-line {
\bold \fontsize #3 \on-the-fly #print-page-number-check-first
\fromproperty #'page:page-number-string } }

You can also define these values in Scheme. In that case mm, in, pt, and cm are variables
defined in ‘paper-defaults.ly’ with values in millimeters. That is why the value must be
multiplied in the example

\paper {
#(define bottom-margin (* 2 cm))
}

The header and footer are created by the functions make-footer and make-header, defined
in \paper. The default implementations are in ‘ly/paper-defaults.ly’ and ‘ly/titling-init
Ly’

The page layout itself is done by two functions in the \paper block, page-music-height
and page-make-stencil. The former tells the line-breaking algorithm how much space can be

spent on a page, the latter creates the actual page given the system to put on it.

See also
Notation Reference: Section 4.4.2 [Vertical spacing between systems], page 349.

Snippets: Section “Spacing” in Snippets.

Chapter 4: Spacing issues 336

Horizontal dimensions

Note: If paper-width is manually set, 1ine-width, left-margin, indent, and short-indent
may have to be adjusted as well.

There are a few variables that determine the horizontal dimensions on a page:

horizontal-shift
The amount that all systems (including titles and system separators) are shifted to
the right. Default: 0.0.

indent

The level of indentation for the first system in a score. Default: paper-width
divided by 14, as determined by set-default-paper-size or set-paper-size.

left-margin
The margin between the left edge of the page and the beginning of each system.
Default: 10\mm, as determined by set-default-paper-size or set-paper-size.

line-width
The width of music systems. Default: paper-width minus 20\mm, as determined by
set-default-paper—-size or set-paper-size.

paper-width
The width of the page. Default: the width of the current paper size. For details,
see Section 4.1.1 [Paper size], page 333.

short-indent
The level of indentation for all systems in a score besides the first system. Default:
0, as determined by set-default-paper-size or set-paper-size.

See also
Snippets: Section “Spacing” in Snippets.

Known issues and warnings

The option right-margin is defined but doesn’t set the right margin yet. The value for the
right margin has to be defined by adjusting the values of left-margin and line-width.

Other layout variables
These variables can be used to adjust page layout in general.

auto-first-page—-number
The page breaking algorithm is affected by the first page number being odd or even.
If set to true, the page breaking algorithm will decide whether to start with an odd
or even number. This will result in the first page number remaining as is or being
increased by one. Default: ##f.

blank-last-page-force
The penalty for ending the score on an odd-numbered page. Default: 0.

blank-page-force
The penalty for having a blank page in the middle of a score. This is not used by
ly:optimal-breaking since it will never consider blank pages in the middle of a
score. Default: 5.

first-page—number
The value of the page number on the first page. Default: #1.

Chapter 4: Spacing issues 337

page-breaking-between-system-padding
Tricks the page breaker into thinking that between-system-padding is set to some-
thing different than it really is. For example, if this variable is set to something
substantially larger than between-system-padding, then the page-breaker will put
fewer systems on each page. Default: unset.

page-count
The number of pages to be used for a score. Default: unset.

page-limit-inter-system—space
If set to true, limits space between systems on a page with a lot of space left. Default:
##f. For details, see Section 4.4.2 [Vertical spacing between systems|, page 349.

page-limit-inter-system-space-factor
The factor used by page-limit-inter-system-space. Default: 1.4. For details,
see Section 4.4.2 [Vertical spacing between systems|, page 349.

page-spacing-weight
The relative importance of page (vertical) spacing and line (horizontal) spacing.
High values will make page spacing more important. Default: #10.

print-all-headers
If set to true, this will print all headers for each \score in the output. Normally
only the piece and opus header variables are printed. Default: ##f.

print-first-page—-number
If set to true, a page number is printed on the first page. Default: ##f.

print-page-number
If set to false, page numbers are not printed. Default: ##t.

ragged-bottom
If set to true, systems will not spread vertically across the page. This does not affect
the last page. Default: ##f.

This should be set to true for pieces that have only two or three systems per page,
for example orchestral scores.

ragged-last
If set to true, the last system in the score will not fill the line width. Instead the
last system ends at its natural horizontal length. Default: ##f.

ragged-last-bottom
If set to false, systems will spread vertically across the last page. Default: ##t.
Pieces that amply fill two pages or more should have this set to true.
It also affects the last page of book parts, ie parts of a book created with \bookpart
blocks.

ragged-right
If set to true, systems will not fill the line width. Instead, systems end at their
natural horizontal length. Default: ##f.

If the score has only one system, the default value is ##t.
system-separator-markup

A markup object that is inserted between systems. This is often used for orchestral
scores. Default: unset.

The markup command \slashSeparator is provided as a sensible default, for ex-
ample

Chapter 4: Spacing issues 338

¥ N\

310 puodAIMMM—E ZT G PUOJAIIT Aq Sutaerdus oSNy

system-count
The number of systems to be used for a score. Default: unset.

See also

Snippets: Section “Spacing” in Snippets.

Known issues and warnings

The default page header puts the page number and the instrument field from the \header
block on a line.

The titles (from the \header{} section) are treated as a system, so ragged-bottom and
ragged-last-bottom will add space between the titles and the first system of the score.

4.2 Music layout

4.2.1 Setting the staff size
The default staff size is set to 20 points. This may be changed in two ways:

To set the staff size globally for all scores in a file (or in a book block, to be precise), use
set-global-staff-size.

#(set-global-staff-size 14)
This sets the global default size to 14pt staff height and scales all fonts accordingly.

To set the staff size individually for each score, use

Chapter 4: Spacing issues 339

\score{
\layout{
#(layout-set-staff-size 15)

}
}

The Feta font provides musical symbols at eight different sizes. Fach font is tuned for a
different staff size: at a smaller size the font becomes heavier, to match the relatively heavier
staff lines. The recommended font sizes are listed in the following table:

font name staff height (pt) staff height (mm) use

fetall 11.22 3.9 pocket scores
fetal3 12.60 4.4

fetald 14.14 5.0

fetal6 15.87 5.6

fetal8 17.82 6.3 song books
feta20 20 7.0 standard parts
feta23 22.45 7.9

feta26 25.2 8.9

These fonts are available in any sizes. The context property fontSize and the layout property
staff-space (in Section “StaffSymbol” in Internals Reference) can be used to tune the size for
individual staves. The sizes of individual staves are relative to the global size.

See also

Notation Reference: [Selecting notation font size], page 149.
Snippets: Section “Spacing” in Snippets.

Known issues and warnings

layout-set-staff-size does not change the distance between the staff lines.

4.2.2 Score layout

While \paper contains settings that relate to the page formatting of the whole document,
\layout contains settings for score-specific layout.
\layout {
indent = 2.0\cm
\context { \Staff
\override VerticalAxisGroup #'minimum-Y-extent = #'(-6 . 6)
}
\context { \Voice
\override TextScript #'padding = #1.0
\override Glissando #'thickness = #3
}
}

See also

Notation Reference: Section 5.1.4 [Changing context default settings], page 380.
Snippets: Section “Spacing” in Snippets.

Chapter 4: Spacing issues 340

4.3 Breaks

4.3.1 Line breaking

Line breaks are normally determined automatically. They are chosen so that lines look neither
cramped nor loose, and consecutive lines have similar density. Occasionally you might want to
override the automatic breaks; you can do this by specifying \break. This will force a line break
at this point. However, line breaks can only occur at the end of ‘complete’ bars, i.e., where there
are no notes or tuplets left ‘hanging’ over the bar line. If you want to have a line break where
there is no bar line, you can force an invisible bar line by entering \bar "", although again there
must be no notes left hanging over in any of the staves at this point, or it will be ignored.

The opposite command, \noBreak, forbids a line break at the bar line where it is inserted.

The most basic settings influencing line spacing are indent and line-width. They are set
in the \layout block. They control the indentation of the first line of music, and the lengths of
the lines.

If ragged-right is set to true in the \layout block, then systems end at their natural
horizontal length, instead of being spread horizontally to fill the whole line. This is useful for
short fragments, and for checking how tight the natural spacing is.

The option ragged-last is similar to ragged-right, but affects only the last line of the
piece.

\layout {

indent = #0
line-width = #150
ragged-last = ##t
}

For line breaks at regular intervals use \break separated by skips and repeated with \repeat.
For example, this would cause the following 28 measures (assuming 4/4 time) to be broken every
4 measures, and only there:
<< \repeat unfold 7 {

s1 \noBreak sl \noBreak
s1 \noBreak s1 \break }

the real music
>>

A linebreaking configuration can be saved as a .1y file automatically. This allows vertical
alignments to be stretched to fit pages in a second formatting run. This is fairly new and
complicated. More details are available in Section “Spacing” in Snippets.

Predefined commands
\break, \noBreak.

See also

Internals Reference: Section “LineBreakEvent” in Internals Reference.

Snippets: Section “Spacing” in Snippets.

Known issues and warnings

Line breaks can only occur if there is a ‘proper’ bar line. A note which is hanging over a bar
line is not proper, such as

cd c2 << c2 {s4 \break } >> ¥ this does nothing
c2 c4d | % a break here would work
cd c2 c4 ~ \break % as does this break

Chapter 4: Spacing issues 341

c4d c2 c4

This can be avoided by removing the Forbid_line_break_engraver. Note that manually
forced line breaks have to be added in parallel with the music.

\new Voice \with {
\remove Forbid_line_break_engraver

P A
cd c2 << c2 {s4 \break } >> Y now the break is allowed
c2 c4
}
()
)" 4
4\ y £}
[[an Y W]
ANV
()

ol
YU
Nl

3

N

oL
<l

Similarly, line breaks are normally forbidden when beams cross bar lines. This behavior can
be changed by setting \override Beam #'breakable = #it.

4.3.2 Page breaking

The default page breaking may be overridden by inserting \pageBreak or \noPageBreak com-
mands. These commands are analogous to \break and \noBreak. They should be inserted at
a bar line. These commands force and forbid a page-break from happening. Of course, the
\pageBreak command also forces a line break.

The \pageBreak and \noPageBreak commands may also be inserted at top-level, between
scores and top-level markups.

There are also analogous settings to ragged-right and ragged-last which have the same
effect on vertical spacing: ragged-bottom and ragged-last-bottom. If set to ##t the systems
on all pages or just the last page respectively will not be justified vertically.

For more details see Section 4.4 [Vertical spacing], page 347.

Page breaks are computed by the page-breaking function. LilyPond provides three al-
gorithms for computing page breaks, ly:optimal-breaking, ly:page-turn-breaking and
ly:minimal-breaking. The default is 1y:optimal-breaking, but the value can be changed in
the \paper block:

Chapter 4: Spacing issues 342

\paper{

#(define page-breaking ly:page-turn-breaking)
}

The old page breaking algorithm is called optimal-page-breaks. If you are having trouble
with the new page breakers, you can enable the old one as a workaround.

When a book has many scores and pages, the page breaking problem may be difficult to solve,
requiring large processing time and memory. To ease the page breaking process, \bookpart
blocks are used to divide the book into several parts: the page breaking occurs separately on
each part. Different page breaking functions may also be used in different book parts.
\bookpart {

\header {

subtitle = "Preface"
}
\paper {
%% In a part consisting mostly of text,
%% ly:minimal-breaking may be prefered
#(define page-breaking ly:minimal-breaking)
}
\markup { ... }

3
\bookpart {
%% In this part, consisting of music, the default optimal
%% page breaking function is used.
\header {
subtitle = "First movement"
}
\score { ... }

¥

Predefined commands

\pageBreak, \noPageBreak.

See also

Snippets: Section “Spacing” in Snippets.

4.3.3 Optimal page breaking

The 1y:optimal-breaking function is LilyPond’s default method of determining page breaks.
It attempts to find a page breaking that minimizes cramping and stretching, both horizontally
and vertically. Unlike 1y:page-turn-breaking, it has no concept of page turns.

See also

Snippets: Section “Spacing” in Snippets.

4.3.4 Optimal page turning

Often it is necessary to find a page breaking configuration so that there is a rest at the end of
every second page. This way, the musician can turn the page without having to miss notes. The
ly:page-turn-breaking function attempts to find a page breaking minimizing cramping and
stretching, but with the additional restriction that it is only allowed to introduce page turns in
specified places.

Chapter 4: Spacing issues 343

There are two steps to using this page breaking function. First, you must enable it in the
\paper block, as explained in Section 4.3.2 [Page breaking], page 341. Then you must tell the
function where you would like to allow page breaks.

There are two ways to achieve the second step. First, you can specify each potential page
turn manually, by inserting \allowPageTurn into your input file at the appropriate places.

If this is too tedious, you can add a Page_turn_engraver to a Staff or Voice context. The
Page_turn_engraver will scan the context for sections without notes (note that it does not scan
for rests; it scans for the absence of notes. This is so that single-staff polyphony with rests in
one of the parts does not throw off the Page_turn_engraver). When it finds a sufficiently long
section without notes, the Page_turn_engraver will insert an \allowPageTurn at the final bar
line in that section, unless there is a ‘special’ bar line (such as a double bar), in which case the
\allowPageTurn will be inserted at the final ‘special’ bar line in the section.

The Page_turn_engraver reads the context property minimumPageTurnLength to determine
how long a note-free section must be before a page turn is considered. The default value for
minimumPageTurnLength is #(ly:make-moment 1 1). If you want to disable page turns, you
can set it to something very large.

\new Staff \with { \consists "Page_turn_engraver" }
{
ad b cd |
R1 | % a page turn will be allowed here
ad b cd |
\set Staff.minimumPageTurnlength = #(ly:make-moment 5 2)
R1 | % a page turn will not be allowed here
a4 b r2 |
R1%2 | % a page turn will be allowed here
al

The Page_turn_engraver detects volta repeats. It will only allow a page turn during the
repeat if there is enough time at the beginning and end of the repeat to turn the page back.
The Page_turn_engraver can also disable page turns if the repeat is very short. If you set the
context property minimumRepeatLengthForPageTurn then the Page_turn_engraver will only
allow turns in repeats whose duration is longer than this value.

The page turning commands, \pageTurn, \noPageTurn and \allowPageTurn, may also be
used at top-level, between scores and top-level markups.
Predefined commands
\pageTurn, \noPageTurn, \allowPageTurn.

See also
Snippets: Section “Spacing” in Snippets.

Known issues and warnings

There should only be one Page_turn_engraver in a score. If there is more than one, they will
interfere with each other.

4.3.5 Minimal page breaking

The ly:minimal-breaking function performs minimal computations to calculate the page
breaking: it fills a page with as many systems as possible before moving to the next one.
Thus, it may be preferred for scores with many pages, where the other page breaking functions
could be too slow or memory demanding, or a lot of texts. It is enabled using:

Chapter 4: Spacing issues 344

\paper {

#(define page-breaking ly:minimal-breaking)
}
See also

Snippets: Section “Spacing” in Snippets.
4.3.6 Explicit breaks

Lily sometimes rejects explicit \break and \pageBreak commands. There are two commands
to override this behavior:

\override NonMusicalPaperColumn #'line-break-permission = ##f
\override NonMusicalPaperColumn #'page-break-permission = ##f

When line-break-permission is overridden to false, Lily will insert line breaks at explicit
\break commands and nowhere else. When page-break-permission is overridden to false, Lily
will insert page breaks at explicit \pageBreak commands and nowhere else.

\paper {
indent = #0
ragged-right = ##t
ragged-bottom = ##t
+

\score {
\new Score \with {
\override NonMusicalPaperColumn #'line-break-permission = ##f
\override NonMusicalPaperColumn #'page-break-permission = ##f
HaRt
\new Staff {

\repeat unfold 2 { ¢'8 ¢'8 ¢'8 c'8 } \break
\repeat unfold 4 { c¢'8 ¢'8 ¢'8 c'8 } \break
\repeat unfold 6 { c'8 ¢'8 c'8 ¢'8 } \break
\repeat unfold 8 { ¢'8 ¢'8 ¢'8 c'8 } \pageBreak
\repeat unfold 8 { c¢'8 ¢'8 c'8 ¢'8 } \break
\repeat unfold 6 { c'8 ¢'8 ¢'8 c'8 } \break
\repeat unfold 4 { ¢c'8 ¢'8 c'8 ¢'8 } \break
\repeat unfold 2 { ¢'8 ¢c'8 c'8 ¢'8 }
}
}
}

o)

A

[(v YA W7 | [[1 | [[1

SV | | | | | | | |

o dddsddddd

2
0
7\
e s s s B o e e
J o0 deeeed 6060 ee
4

L Y8
L1l
L1
L1
L YiE
L1l
L1
L1
L YiE
L1l
L 1
L1l
L YiE
L1
1
LYl
L YiE
L 1
L1
L1
L YiE
1
L1
L1

Chapter 4: Spacing issues

L YEE
L Yo
L Yo
L YE
L YEE
L Yo
L YE
L YE

<

L1

<

L1

e

B

See also

Snippets: Section “Spacing” in Snippets.

L

{ YAE

L1

1

¢

{ YAB

L1

i

4.3.7 Using an extra voice for breaks

Line- and page-breaking information usually appears within note entry directly.

\new Score {
\new Staff {

\repeat unfold 2 { c'4 c'4 c'4 c'4 }

\break

\repeat unfold 3 { c¢'4 c'4 c'4 c'4 }

X
¥

L 1El

345

This makes \break and \pageBreak commands easy to enter but mixes music entry with
information that specifies how music should lay out on the page. You can keep music entry
and line- and page-breaking information in two separate places by introducing an extra voice to
contain the breaks. This extra voice contains only skips together with \break, pageBreak and

other breaking layout information.

\new Score {
\new Staff <<
\new Voice {
sl * 2 \break
s1 * 3 \break
sl * 6 \break
s1 * 5 \break

}

\new Voice {
\repeat unfold
\repeat unfold
\repeat unfold
\repeat unfold

2 {
31
6 {
5 {

o o0 o0 o0

PN NEFNN

Chapter 4: Spacing issues

-
N @4

G

P

Gz e

G

This pattern becomes especially helpful when overriding 1ine-break-system-details and
the other useful but long properties of NonMusicalPaperColumnGrob, as explained in Section 4.4

 J

¢ o o € 0 o o ¢ o o o ¢ o ¢

[Vertical spacing], page 347.

\new Score {
\new Staff <<
\new Voice {

>>

}

\overrideProperty "Score.NonMusicalPaperColumn"
#'line-break-system-details #'((Y-offset . 0))
sl * 2 \break

\overrideProperty "Score.NonMusicalPaperColumn"
#'line-break-system-details #'((Y-offset . 35))
s1 * 3 \break

\overrideProperty "Score.NonMusicalPaperColumn"
#'line-break-system-details #'((Y-offset . 70))
sl * 6 \break

\overrideProperty "Score.NonMusicalPaperColumn"
#'line-break-system-details #'((Y-offset . 105))
sl * 5 \break

\new Voice {

NSNS

\repeat unfold 2
\repeat unfold 3
\repeat unfold 6
\repeat unfold 5

{
{
{
{

O o o o0

o O @O

E

Chapter 4: Spacing issues 347

}

()

)" 4

7\ I £)

[v YA W]

P

[Y) & & & & & & & &
3

0

/\

[Farn) | | | | | | | | | | | |
SV | | | | | | | | | | | |
dJ € & & & & & & & & & & &
60

)" 4

7\

D

dJ o6 dd 66dd 600 0 d e dds
12“

)" 4

7\

[FanY

ANV

¢ ¢ ¢ 6 ¢ ¢ 0 66 ¢ 6 ¢ ¢ 0 e ¢4 4
See also

Notation Reference: Section 4.4 [Vertical spacing], page 347.
Snippets: Section “Spacing” in Snippets.

4.4 Vertical spacing

Vertical spacing is controlled by three things: the amount of space available (i.e., paper size and
margins), the amount of space between systems, and the amount of space between staves inside
a system.

4.4.1 Vertical spacing inside a system

The height of each system is determined automatically. To prevent staves from bumping into
each other, some minimum distances are set. By changing these, you can put staves closer
together. This reduces the amount of space each system requires, and may result in having
more systems per page.

Normally staves are stacked vertically. To make staves maintain a distance, their vertical
size is padded. This is done with the property minimum-Y-extent. When applied to a Section
“Vertical AxisGroup” in Internals Reference, it controls the size of a horizontal line, such as a
staff or a line of lyrics. minimum-Y-extent takes a pair of numbers, so if you want to make it
smaller than its default #' (-4 . 4) then you could set

\override Staff.VerticalAxisGroup #'minimum-Y-extent = #'(-3 . 3)

This sets the vertical size of the current staff to 3 staff spaces on either side of the center staff
line. The value (-3 . 3) is interpreted as an interval, where the center line is the 0, so the first
number is generally negative. The numbers need not match; for example, the staff can be made
larger at the bottom by setting it to (-6 . 4).

After page breaks are determined, the vertical spacing within each system is reevaluated in
order to fill the page more evenly; if a page has space left over, systems are stretched in order to
fill that space. The amount of stretching can be configured though the max-stretch property
of the Section “VerticalAlignment” in Internals Reference grob. By default, max-stretch is set

Chapter 4: Spacing issues 348

to zero, disabling stretching. To enable stretching, a sane value for max-stretch is 1y:align-
interface::calc-max-stretch.

In some situations, you may want to stretch most of a system while leaving some parts fixed.
For example, if a piano part occurs in the middle of an orchestral score, you may want to leave
the piano staves close to each other while stretching the rest of the score. The keep-fixed-
while-stretching property of Section “VerticalAxisGroup” in Internals Reference can be used
to achieve this. When set to ##t, this property keeps its staff (or line of lyrics) from moving
relative to the one directly above it. In the example above, you would override keep-fixed-
while-stretching to ##t in the second piano staff:

#(set-default-paper-size "a6")
#(set-global-staff-size 14.0)

\book {
\paper {
ragged-last-bottom = ##f
3
\new Score \with
{
\override VerticalAlignment #'max-stretch = #ly:align-interface::calc-max-stretch
3
{
\new GrandStaff
<<
\new StaffGroup
<<
\new Staff {c' d' e' f'}
\new Staff {c' d' e' f'}
\new Staff {c' d' e' f'}
>>
\new PianoStaff
<<
\new Staff {c' d' e' f'}
\new Staff \with {
\override VerticalAxisGroup #'keep-fixed-while-stretching = ##t
+
{c' d' e' £'}
>>
\new StaffGroup
<<
\new Staff {c' d' e' f'}
\new Staff {c' d' e' f'}
>>
>>
}

}

Chapter 4: Spacing issues 349

Music engraving by LilyPond 2.12.3—www.lilypond.org

Vertical alignment of staves is handled by the VerticalAlignment object. The context
parameters specifying the vertical extent are described in connection with the Axis_group_
engraver.

See also
Snippets: Section “Spacing” in Snippets.

Internals Reference: Section “VerticalAlignment” in Internals Reference, Section
“Axis_group_engraver” in Internals Reference.

4.4.2 Vertical spacing between systems

Space between systems are controlled by four \paper variables,

\paper {
between-system-space = 1.5\cm
between-system-padding = #1
ragged-bottom=##f
ragged-last-bottom=##f

When only a couple of flat systems are placed on a page, the resulting vertical spacing may
be non-elegant: one system at the top of the page, and the other at the bottom, with a huge
gap between them. To avoid this situation, the space added between the systems can be limited.
This feature is activated by setting to #t the page-limit-inter-system-space variable in the
\paper block. The paper variable page-limit-inter-system-space-factor determines how

Chapter 4: Spacing issues 350

much the space can be increased: for instance, the value 1.3 means that the space can be 30%
larger than what it would be on a ragged-bottom page.

In the following example, if the inter system space were not limited, the second system of
page 1 would be placed at the page bottom. By activating the space limitation, the second
system is placed closer to the first one. By setting page-limit-inter-system-space-factor
to 1, the spacing would the same as on a ragged-bottom page, like the last one.

#(set-default-paper-size "a6")
\book {
\paper {
page-limit-inter-system-space = ##t
page-limit-inter-system-space-factor = 1.3

oddFooterMarkup = \markup "page bottom"
evenFooterMarkup = \markup "page bottom"
oddHeaderMarkup = \markup \fill-line {
"page top" \fromproperty #'page:page-number-string 7}
evenHeaderMarkup = \markup \fill-line {
"page top" \fromproperty #'page:page-number-string }
b
\new Staff << \repeat unfold 4 { g'4 g' g' g' \break }
{ s1%2 \pageBreak } >>

Chapter 4: Spacing issues

page top

N

') I

T

P

page bottom

351

Chapter 4: Spacing issues 352

page top 2

5.0
V4
2

| 10E1

% e cf
Q]

page bottom

See also

Snippets: Section “Spacing” in Snippets.

4.4.3 Explicit staff and system positioning

One way to understand the VerticalAxisGroup and \paper settings explained in the previous
two sections is as a collection of different settings that primarily concern the amount of vertical
padding different staves and systems running down the page.

It is possible to approach vertical spacing in a different way using NonMusicalPaperColumn
#'line-break-system-details. Where VerticalAxisGroup and \paper settings specify ver-
tical padding, NonMusicalPaperColumn #'line-break-system-details specifies exact vertical
positions on the page.

NonMusicalPaperColumn #'line-break-system-details accepts an associative list of five
different settings:

e X-offset
e Y-offset
e alignment-offsets
e alignment-extra-space
e fixed-alignment-extra-space
Grob overrides, including the overrides for NonMusicalPaperColumn below, can occur in any
of three different places in an input file:

e in the middle of note entry directly

Chapter 4: Spacing issues 353

e in a \context block
e in the \with block

When we override NonMusicalPaperColumn, we use the usual \override command
in \context blocks and in the \with block. On the other hand, when we override
NonMusicalPaperColumn in the middle of note entry, use the special \overrideProperty
command. Here are some example NonMusicalPaperColumn overrides with the special
\overrideProperty command:

\overrideProperty NonMusicalPaperColumn
#'line-break-system-details #'((X-offset . 20))

\overrideProperty NonMusicalPaperColumn
#'line-break-system-details #'((Y-offset . 40))

\overrideProperty NonMusicalPaperColumn
#'line-break-system-details #'((X-offset . 20) (Y-offset . 40))

\overrideProperty NonMusicalPaperColumn
#'line-break-system-details #'((alignment-offsets . (0 -15)))

\overrideProperty NonMusicalPaperColumn
#'line-break-system-details #'((X-offset . 20) (Y-offset . 40)
(alignment-offsets . (0 -15)))

To understand how each of these different settings work, we begin by looking at an example
that includes no overrides at all.

p—
N (¢4

| ¢ 6 6 6 9 ¢ ¢ 99 ¢ 99 ¢

P P
[)
(
[

o))

NS P

)
Y

| 6 6 6 0 6 9 o ¢ 9 ¢ ¢ 9 9 ¢ 9

3

=
[

NS jt
]

J

]

I

|

3

| 6 6 6 o ¢ 6 ¢ ¢ 9 69 o ¢ 9 ¢ 9

P> ¢
L}

)

)
.
]
!
|

Chapter 4: Spacing issues 354

This score isolates line- and page-breaking information in a dedicated voice. This technique of
creating a breaks voice will help keep layout separate from music entry as our example becomes
more complicated. See Section 4.3.7 [Using an extra voice for breaks|, page 345.

Explicit \breaks evenly divide the music into six measures per line. Vertical spacing results
from LilyPond’s defaults. To set the vertical startpoint of each system explicitly, we can set the
Y-offset pair in the line-break-system-details attribute of the NonMusicalPaperColumn

grob:

p—
N (@4

NS P

’-
>
I
N

o]

PO U

| 6 6 6 0 6 9 o ¢ 9 ¢ ¢ ¢ ¢ ¢ ¢ 9

)
¢

3

)
.
.
]
]
]
]
Jl

| 6 6 6 0 6 9 o ¢ 9 ¢ ¢ ¢ 9 ¢ ¢ 9

)
¢

PO AP

3

]

Note that 1ine-break-system-details takes an associative list of potentially many values,
but that we set only one value here. Note, too, that the Y-offset property here determines the
exact vertical position on the page at which each new system will render.

Chapter 4: Spacing issues 355

Now that we have set the vertical startpoint of each system explicitly, we can also set the
vertical startpoint of each staff within each system manually. We do this using the alignment-
offsets subproperty of 1ine-break-system-details.

N\ (@

Gz e
-

DO

o
N (o]

3

J
J|
.
:
J
.
4
4
:
.
:
J|
N
J

|

P

L‘f;kb
(N
9
(N
(N
|

P

il
.
]
]
|

Chapter 4: Spacing issues 356

Note that here we assign two different values to the 1ine-break-system-details attribute
of the NonMusicalPaperColumn grob. Though the line-break-system-details attribute alist
accepts many additional spacing parameters (including, for example, a corresponding X-offset
pair), we need only set the Y-offset and alignment-offsets pairs to control the vertical
startpoint of every system and every staff. Finally, note that alignment-offsets specifies the
vertical positioning of staves but not of staff groups.

357

Chapter 4: Spacing issues

r

o @

3

r

o @

L

r 3

L

o @

o @

o o

o @

r)

7\
[(v Y O

ANV

0 @0

K

K [4

oo o

r)

4\
[(oY W]

%;’_l @ | @

7\ r)
[\ W]

o

\

6

y

E g

&

y

y

L g

Y

y

y

L

y

y

y

g

y

y

dJ ¢ ¢ ¢ @

o

\

y

L

&

y

o @

y

L

y

y

o @& @

y

L

y

y

o @ @

y

g

y

y

o o @

@& @

dJ 6 ¢ ¢ @

11()

<

\

Chapter 4: Spacing issues 358

Some points to consider:
e When using alignment-offsets, lyrics count as a staff.

e The units of the numbers passed to X-offset, Y-offset and alignment-offsets are
interpreted as multiples of the distance between adjacent staff lines. Positive values move
staves and lyrics up, negative values move staves and lyrics down.

e Because the NonMusicalPaperColumn #'line-break-system-details settings given here
allow the positioning of staves and systems anywhere on the page, it is possible to violate
paper or margin boundaries or even to print staves or systems on top of one another.
Reasonable values passed to these different settings will avoid this

See also

Snippets: Section “Spacing” in Snippets.

4.4.4 Two-pass vertical spacing

Note: Two-pass vertical spacing is deprecated and will be removed in a future version of Lily-
Pond. Systems are now stretched automatically in a single pass. See Section 4.4.1 [Vertical
spacing inside a system], page 347.

In order to automatically stretch systems so that they should fill the space left on a page, a
two-pass technique can be used:

1. In the first pass, the amount of vertical space used to increase the height of each system is
computed and dumped to a file.

2. In the second pass, spacing inside the systems are stretched according to the data in the
page layout file.

The ragged-bottom property adds space between systems, while the two-pass technique adds
space between staves inside a system.

To allow this behavior, a tweak-key variable has to be set in each score \layout block, and
the tweaks included in each score music, using the \scoreTweak music function.

%% include the generated page layout file:
\includePagelayoutFile

\score {
\new StaffGroup <<
\new Staff <<
%% Include this score tweaks:
\scoreTweak "scoreA"
{ \clef french c''1l \break c''1l }
>>
\new Staff { \clef soprano g'l g'l }
\new Staff { \clef mezzosoprano e'l e'l }
\new Staff { \clef alto gl gl }
\new Staff { \clef bass cl1 cl }
>>
\header {
piece = "Score with tweaks"
}
%% Define how to name the tweaks for this score:
\layout { #(define tweak-key "scoreA") }

Chapter 4: Spacing issues 359

For the first pass, the dump-tweaks option should be set to generate the page layout file.

lilypond -dbackend=null -d dump-tweaks <file>.ly
lilypond <file>.ly

See also

Snippets: Section “Spacing” in Snippets.

4.4.5 Vertical collision avoidance

Intuitively, there are some objects in musical notation that belong to the staff and there are
other objects that should be placed outside the staff. Objects belonging outside the staff include
things such as rehearsal marks, text and dynamic markings (from now on, these will be called
outside-staff objects). LilyPond’s rule for the vertical placement of outside-staff objects is to
place them as close to the staff as possible but not so close that they collide with another object.

LilyPond uses the outside-staff-priority property to determine whether a grob is an
outside-staff object: if outside-staff-priority is a number, the grob is an outside-staff object.
In addition, outside-staff-priority tells LilyPond in which order the objects should be
placed.

First, LilyPond places all the objects that do not belong outside the staff. Then it sorts the
outside-staff objects according to their outside-staff-priority (in increasing order). One by
one, LilyPond takes the outside-staff objects and places them so that they do not collide with
any objects that have already been placed. That is, if two outside-staff grobs are competing for
the same space, the one with the lower outside-staff-priority will be placed closer to the
staff.

cd_"Text"\pp

r2.

\once \override TextScript #'outside-staff-priority = #1
c4_"Text"\pp % this time the text will be closer to the staff

r2.

% by setting outside-staff-priority to a non-number,

% we disable the automatic collision avoidance

\once \override TextScript #'outside-staff-priority = ##f

\once \override DynamicLineSpanner #'outside-staff-priority = ##f
c4d_"Text"\pp % now they will collide

0
ANV . | - IP- -

|
PP Text Xt
Text PP

The vertical padding between an outside-staff object and the previously-positioned grobs can
be controlled with outside-staff-padding.

\once \override TextScript #'outside-staff-padding = #0
a'""This text is placed very close to the note"
\once \override TextScript #'outside-staff-padding = #3

c""This text is padded away from the previous text"
c”"This text is placed close to the previous text"

Chapter 4: Spacing issues 360

This text is placed close to the previous text
This text is padded away from the previous text

This text is placed very close to the note
o 22

N |®]

P

By default, outside-staff objects are placed only to avoid a horizontal collision with previously-
positioned grobs. This can lead to situations in which objects are placed very close to each other
horizontally. The vertical spacing between staffs can also be set so that outside staff objects
are interleaved. Setting outside-staff-horizontal-padding causes an object to be offset
vertically so that such a situation doesn’t occur.

% the markup is too close to the following note

c4""Text"
c4
c''2
% setting outside-staff-horizontal-padding fixes this
R1
\once \override TextScript #'outside-staff-horizontal-padding = #1
c,,4 " "Text"
cé
c''2
2 Text 2
N Text 1= =
—

ANV . I I

ry) | |
See also

Snippets: Section “Spacing” in Snippets.
4.5 Horizontal spacing

4.5.1 Horizontal spacing overview

The spacing engine translates differences in durations into stretchable distances (‘springs’) of
differing lengths. Longer durations get more space, shorter durations get less. The shortest
durations get a fixed amount of space (which is controlled by shortest-duration-space in the
Section “SpacingSpanner” in Internals Reference object). The longer the duration, the more
space it gets: doubling a duration adds a fixed amount (this amount is controlled by spacing-
increment) of space to the note.

For example, the following piece contains lots of half, quarter, and 8th notes; the eighth note
is followed by 1 note head width (NHW). The quarter note is followed by 2 NHW, the half by
3 NHW, etc.

c2 c4. c8 c4. c8 c4. c8 c8
c8 c4 c4 c4

|

~

Gz e
-

¢

.

)

.

L

.

)

L 18

L 18

L

L

[)

Chapter 4: Spacing issues 361

Normally, spacing-increment is set to 1.2 staff space, which is approximately the width of
a note head, and shortest-duration-space is set to 2.0, meaning that the shortest note gets
2.4 staff space (2.0 times the spacing-increment) of horizontal space. This space is counted
from the left edge of the symbol, so the shortest notes are generally followed by one NHW of
space.

If one would follow the above procedure exactly, then adding a single 32nd note to a score
that uses 8th and 16th notes, would widen up the entire score a lot. The shortest note is no
longer a 16th, but a 32nd, thus adding 1 NHW to every note. To prevent this, the shortest
duration for spacing is not the shortest note in the score, but rather the one which occurs most
frequently.

The most common shortest duration is determined as follows: in every measure, the shortest
duration is determined. The most common shortest duration is taken as the basis for the spacing,
with the stipulation that this shortest duration should always be equal to or shorter than an
8th note. The shortest duration is printed when you run 1ilypond with the --verbose option.

These durations may also be customized. If you set the common-shortest-duration in
Section “SpacingSpanner” in Internals Reference, then this sets the base duration for spac-
ing. The maximum duration for this base (normally an 8th), is set through base-shortest-
duration.

Notes that are even shorter than the common shortest note are followed by a space that is
proportional to their duration relative to the common shortest note. So if we were to add only
a few 16th notes to the example above, they would be followed by half a NHW:

c2 c4. c8 c4. c16[c] c4. c8 c8 c8 c4 c4 c4

In the introduction (see Section “Engraving” in Learning Manual), it was explained that stem
directions influence spacing. This is controlled with the stem-spacing-correction property in
the Section “NoteSpacing” in Internals Reference, object. These are generated for every Section
“Voice” in Internals Reference context. The StaffSpacing object (generated in Section “Staff”
in Internals Reference context) contains the same property for controlling the stem/bar line
spacing. The following example shows these corrections, once with default settings, and once
with exaggerated corrections:

P
'T
3
Al
:
\

Proportional notation is supported; see Section 4.5.5 [Proportional notation], page 365.

See also
Snippets: Section “Spacing” in Snippets.

Internals Reference: Section “SpacingSpanner” in Internals Reference, Section “NoteSpac-
ing” in Internals Reference, Section “StaffSpacing” in Internals Reference, Section “NonMusi-
calPaperColumn” in Internals Reference.

Chapter 4: Spacing issues 362

Known issues and warnings

There is no convenient mechanism to manually override spacing. The following work-around
may be used to insert extra space into a score, adjusting the padding value as necessary.

\override Score.NonMusicalPaperColumn #'padding = #10

No work-around exists for decreasing the amount of space.

4.5.2 New spacing area

New sections with different spacing parameters can be started with newSpacingSection. This
is useful when there are sections with a different notions of long and short notes.

In the following example, the time signature change introduces a new section, and hence the
16ths notes are spaced wider.
\time 2/4
c4 c8 c
c8 ¢ c4 c16[c c8] c4
\newSpacingSection
\time 4/16
cl6[c c8]

&

A
) L0)

P
SIS

i o -

o o9 o4 dddd o4

The \newSpacingSection command creates a new SpacingSpanner object, and hence new
\overrides may be used in that location.

See also

Snippets: Section “Spacing” in Snippets.
Internals Reference: Section “SpacingSpanner” in Internals Reference.

4.5.3 Changing horizontal spacing

Horizontal spacing may be altered with the base-shortest-duration property. Here we com-
pare the same music; once without altering the property, and then altered. Larger values of
ly:make-moment will produce smaller music. Note that 1y:make-moment constructs a duration,
so 1 4 is a longer duration than 1 16.

\score {
\relative c'' {
gdee2 | f4dd2 | c4ddef | g4geg2l
gdee2 | f4dd2 | cdeggl c,1|
ddddd| ddef2 | edeece | edf g2
giee2 | f4dd2 | cdeggl c,1|

}
}
/ . ;
7\ r' @) I) I I I
,,' L Jele e ,,'
6.9
A i
@ |

Chapter 4: Spacing issues 363

11 n

P —— T —— i

[4 (ﬂ | | | | -~ ‘ | | o

tj oo o< c 4 -©-
\score {

\relative c'' {
gdee2 | f4dd2 | c4def | g4 geg2l
giee2 | f4dd2 | cdeggl c,1|
ddddd | ddef2 | edeece | e4fg2|
gdee2 | f4dd2 | cdegg | c,1|
}
\layout {
\context {
\Score
\override SpacingSpanner
#'base-shortest-duration = #(ly:make-moment 1 16)

| 1HEE
QL
Q

| 1HEN

| 1HEE
| 1HEE

QL
L 1
L 1

Selected Snippets

By default, spacing in tuplets depends on various non-duration factors (such as accidentals,
clef changes, etc). To disregard such symbols and force uniform equal-duration spacing, use
Score.SpacingSpanner #'uniform-stretching. This property can only be changed at the
beginning of a score,

\new Score \with {
\override SpacingSpanner #'uniform-stretching = ##t
T} <<
\new Staff{
\times 4/5 {

Chapter 4: Spacing issues 364

c8 c8 c8 c8 c8
}
c8 c8 c8 c8
}
\new Staff{
c8 c8 c8 c8
\times 4/5 {
c8 c8 c8 c8 c8
}
}

>>

0

\J | |

¢
0
) [

U 1 L

5

When strict-note-spacing is set, notes are spaced without regard for clefs, bar lines, and
grace notes,

\override Score.SpacingSpanner #'strict-note-spacing = ##t
\new Staff { c8[c \clef alto c \grace { c16[c] } ¢8 c c] <32[c32] }

N .n.ﬂn. 2 o e
L C——r|

b B
See also

Snippets: Section “Spacing” in Snippets.
4.5.4 Line length

The most basic settings influencing the spacing are indent and line-width. They are set in
the \layout block. They control the indentation of the first line of music, and the lengths of
the lines.

If ragged-right is set to true in the \layout block, then systems ends at their natural
horizontal length, instead of being spread horizontally to fill the whole line. This is useful for
short fragments, and for checking how tight the natural spacing is.

The option ragged-last is similar to ragged-right, but only affects the last line of the
piece. No restrictions are put on that line. The result is similar to formatting text paragraphs.
In a paragraph, the last line simply takes its natural horizontal length.

\layout {

indent = #0

line-width = #150

ragged-last = ##t
}

See also

Snippets: Section “Spacing” in Snippets.

Chapter 4: Spacing issues 365

4.5.5 Proportional notation

LilyPond supports proportional notation, a type of horizontal spacing in which each note con-
sumes an amount of horizontal space exactly equivalent to its rhythmic duration. This type of
proportional spacing is comparable to horizontal spacing on top of graph paper. Some late 20th-
and early 21st-century scores use proportional notation to clarify complex rhythmic relationships
or to facilitate the placement of timelines or other graphics directly in the score.

LilyPond supports five different settings for proportional notation, which may be used to-
gether or alone:

e proportionalNotationDuration

e uniform-stretching

e strict-note-spacing

e \remove Separating_line_group_engraver

e \override PaperColumn #'used = #i#t

In the examples that follow, we explore these five different proportional notation settings and
examine how these settings interact.

We start with the following one-measure example, which uses classical spacing with ragged-
right turned on.

\new Score <<
\new RhythmicStaff {
c'2
c'l6 c'16 c'16 c'16
\times 4/5 {
c'l6 ¢c'16 ¢c'16 c'16 c'16
}

}
>>

5

L T T 4 L T T T 4

Notice that the half note which begins the measure takes up far less than half of the horizontal
space of the measure. Likewise, the sixteenth notes and sixteenth-note quintuplets (or twentieth
notes) which end the measure together take up far more than half the horizontal space of the
measure.

In classical engraving, this spacing may be exactly what we want because we can borrow
horizontal space from the half note and conserve horizontal space across the measure as a whole.

On the other hand, if we want to insert a measured timeline or other graphic above or
below our score, we need proportional notation. We turn proportional notation on with the
proportionalNotationDuration setting.

\new Score \with {
proportionalNotationDuration = #(ly:make-moment 1 20)
} <<
\new RhythmicStaff {
c'2
c'16 c'16 c'16 c'16
\times 4/5 {
c'16 c'16 ¢'16 c'16 c'16
b

Chapter 4: Spacing issues 366

>>

5

o d I PR
| U2

The half note at the beginning of the measure and the faster notes in the second half of the
measure now occupy equal amounts of horizontal space. We could place a measured timeline or
graphic above or below this example.

The proportionalNotationDuration setting is a context setting that lives in Score. Recall
that context settings appear in one of three locations in our input file — in a \with block, in
a \context block, or directly in music entry preceded by the \set command. As with all
context settings, users can pick which of the three different locations they would like to set
proportionalNotationDuration.

The proportionalNotationDuration setting takes a single argument, which is the refer-
ence duration against which all music will be spaced. The LilyPond Scheme function make-
moment takes two arguments — a numerator and denominator which together express some
fraction of a whole note. The call #(1y:make-moment 1 20) therefore produces a reference du-
ration of a twentieth note. The values #(1ly:make-moment 1 16), #(1ly:make-moment 1 8), and
#(1ly:make-moment 3 97) are all possible as well.

How do we select the right reference duration to pass to proportionalNotationDuration?
Usually by a process of trial and error, beginning with a duration close to the fastest (or smallest)
duration in the piece. Smaller reference durations space music loosely; larger reference durations
space music tightly.

\new Score \with {
proportionalNotationDuration = #(ly:make-moment 1 8)
} <<
\new RhythmicStaff {
c'2
c'16 c'16 c¢'16 c'16
\times 4/5 {
c'l6 c'16 c'16 c'16 c'16
}

}
>>

\new Score \with {
proportionalNotationDuration = #(ly:make-moment 1 16)
} <<
\new RhythmicStaff {
c'2
c'l6 c'16 c'16 c'16
\times 4/5 {
c'16 c'16 ¢'16 c'16 c'16
b
3

>>

\new Score \with {
proportionalNotationDuration = #(ly:make-moment 1 32)

Chapter 4: Spacing issues 367

T} <<

\new RhythmicStaff {
c'2
c'l6 c'16 c'16 c'16
\times 4/5 {

c'l6 c'16 ¢'16 c'16 c'16

}

}

>>

P
Q-

e d P s s P s s e
L U2

Note that too large a reference duration — such as the eighth note, above — spaces music too
tightly and can cause note head collisions. Note also that proportional notation in general takes
up more horizontal space that does classical spacing. Proportional spacing provides rhythmic
clarity at the expense of horizontal space.

Next we examine how to optimally space overlapping tuplets.

We start by examining what happens to our original example, with classical spacing, when
we add a second staff with a different type of tuplet.

\new Score <<
\new RhythmicStaff {
c'2
c'l6 c'16 c'16 c'16
\times 4/5 {
c'l6 c'16 c'16 c'16 c'16
}
}
\new RhythmicStaff {
\times 8/9 {
c'8 c'8 c'8c'8c'8c'8c'8c'8 '8
}

}
>>

5

e LI
P s s v

The spacing is bad because the evenly notes of the bottom staff do not stretch uniformly. Clas-
sical engraving includes very few complex triplets and so classical engraving rules can generate

Chapter 4: Spacing issues 368

this type of result. Setting proportionalNotationDuration remedies this situation consider-
ably.

\new Score \with {
proportionalNotationDuration = #(ly:make-moment 1 20)
} <<
\new RhythmicStaff {
c'2
c'l6 c'16 c'16 c'16
\times 4/5 {
c'l6 c'16 c'16 c'16 c'16
}
b
\new RhythmicStaff {
\times 8/9 {
c'8 c'8c'8c'8c'8c'8c'8c'8c'8
+

}
>>

s Brrrlrere]
AN R N R B

But if we look very carefully we can see that notes of the second half of the 9-tuplet space
ever so slightly more widely than do the notes of the first half of the 9-tuplet. To ensure uniform
stretching, we turn on uniform-stretching, which is a property of SpacingSpanner.

\new Score \with {
proportionalNotationDuration = #(ly:make-moment 1 20)
\override SpacingSpanner #'uniform-stretching = #i#t
} <<
\new RhythmicStaff {
c'2
c'l6 c'16 c'16 c'16
\times 4/5 {
c'l6 c'16 c'16 c'16 c'16
b
X
\new RhythmicStaff {
\times 8/9 {
c'8 c'8c'8c'8c'8c'8c'8c'8c'8
b
3

>>

®
Q

P s s s s

Chapter 4: Spacing issues 369

Our two-staff example now spaces exactly, our rhythmic relationships are visually clear, and
we can include a measured timeline or graphic if we want.

Note that the LilyPond’s proportional notation package expects that all proportional scores
set the SpacingSpanner’s "uniform-stretching attribute to ##t. Setting proportionalNotation-
Duration without also setting the SpacingSpanner’s 'uniform-stretching attribute to ##t will,
for example, cause Skips to consume an incorrect amount of horizontal space.

The SpacingSpanner is an abstract grob that lives in the Score context. As with our settings
of proportionalNotationDuration, overrides to the SpacingSpanner can occur in any of three
different places in our input file — in the Score \with block, in a Score \context block, or in note
entry directly.

There is by default only one SpacingSpanner per Score. This means that, by default,
uniform-stretching is either turned on for the entire score or turned off for the entire score.
We can, however, override this behavior and turn on different spacing features at different
places in the score. We do this with the command \newSpacingSection. See Section 4.5.2
[New spacing area|, page 362, for more info.

Next we examine the effects of the Separating_line_group_engraver and see why propor-
tional scores frequently remove this engraver. The following example shows that there is a small
amount of “preferatory” space just before the first note in each system.

\paper {
indent = #0
}

\new Staff {
c'l
\break
c'l

©-

The amount of this preferatory space is the same whether after a time signature, a key
signature or a clef. Separating_line_group_engraver is responsible for this space. Removing
Separating_line_group_engraver reduces this space to zero.

\paper {

indent = #0

}

\new Staff \with {

\remove Separating_line_group_engraver
Ao

c'l

\break

c'1

Chapter 4: Spacing issues 370

©-

Nonmusical elements like time signatures, key signatures, clefs and accidentals are problem-
atic in proportional notation. None of these elements has rhythmic duration. But all of these
elements consume horizontal space. Different proportional scores approach these problems dif-
ferently.

It may be possible to avoid spacing problems with key signatures simply by not having any.
This is a valid option since most proportional scores are contemporary music. The same may
be true of time signatures, especially for those scores that include a measured timeline or other
graphic. But these scores are exceptional and most proportional scores include at least some
time signatures. Clefs and accidentals are even more essential.

So what strategies exist for spacing nonmusical elements in a proportional context? One
good option is the strict-note-spacing property of SpacingSpanner. Compare the two scores
below:

\new Staff {
\set Score.proportionalNotationDuration = #(ly:make-moment 1 16)
c''8
c''8s
c''8
\clef alto
d's
d'2

\new Staff {
\set Score.proportionalNotationDuration = #(ly:make-moment 1 16)
\override Score.SpacingSpanner #'strict-note-spacing = ##t
c''8
c''8
c''8
\clef alto
d's
d'2

|”
|
|

Both scores are proportional, but the spacing in the first score is too loose because of the clef
change. The spacing of the second score remains strict, however, because strict-note-spacing is
turned on. Turning on strict-note-spacing causes the width of time signatures, key signatures,
clefs and accidentals to play no part in the spacing algorithm.

Chapter 4: Spacing issues 371

In addition to the settings given here, there are other settings that frequently appear in
proportional scores. These include:

e \override SpacingSpanner #'strict-grace-spacing = ##t
e tupletFullLength = ##t

e \override Beam #'breakable = ##t

e \override Glissando #'breakable = ##t

e \override TextSpanner #'breakable = ##t

e \remove Forbid_line_break_engraver in the Voice context

These settings space grace notes strictly, extend tuplet brackets to mark both rhythmic
start- and stop-points, and allow spanning elements to break across systems and pages. See the
respective parts of the manual for these related settings.

See also

Notation Reference: Section 4.5.2 [New spacing area|, page 362.

Snippets: Section “Spacing” in Snippets.

4.6 Fitting music onto fewer pages

Sometimes you can end up with one or two staves on a second (or third, or fourth...) page. This
is annoying, especially if you look at previous pages and it looks like there is plenty of room left
on those.

When investigating layout issues, annotate-spacing is an invaluable tool. This command
prints the values of various layout spacing variables; for more details see the following section,
Section 4.6.1 [Displaying spacing], page 371.

4.6.1 Displaying spacing

To graphically display the dimensions of vertical layout variables that may be altered for page
formatting, set annotate-spacing in the \paper block:

#(set-default-paper-size "a6" 'landscape)
\book {

\score { { c4 } }

\paper { annotate-spacing = ##t }
}

Chapter 4: Spacing issues 372

ul
©
N
ul
o —_
w % '
N =
. ® =
© S .
© ' un
= g £ <
o -]
Q
= 5 5 ©
EB. o ~+ Lon\
: 2 =
~+ o
oQ ®
S =
< o
i o 4—(3_—»
® g
o
(on >
< +
\
= ®
‘SUN 5 N
o N o N
© ©
= R o -
Q—lah =
N2 ° 3
} . :
wn %]
g w ®
008 Ee) 'g
nl v S
)] Y]
s - o ~+
$g g g
s =} S >
:
= S
. °
Pl Q
< o
S :
]
o
o
=~
oQ

All layout dimensions are displayed in staff-spaces, regardless of the units specified in the \paper
or \layout block. In the above example, paper-height has a value of 59.75 staff-spaces,
and the staff-size is 20 points (the default value). Note that:

1 point = (25.4/72.27) mm
1 staff-space = (staff-size)/4 pts
= (staff-size)/4 *

(25.4/72.27) mm

In this case, one staff-space is approximately equal to 1.757mm. Thus the paper-height
measurement of 59.75 staff-spaces is equivalent to 105 millimeters, the height of a6 paper in
landscape orientation. The pairs (a,b) are intervals, where a is the lower edge and b the upper
edge of the interval.

See also
Section 4.2.1 [Setting the staff size|, page 338 Snippets: Section “Spacing” in Snippets.

4.6.2 Changing spacing

The output of annotate-spacing reveals vertical dimensions in great detail. For details about
modifying margins and other layout variables, see Section 4.1.2 [Page formatting], page 334.

Chapter 4: Spacing issues 373

Other than margins, there are a few other options to save space:

e Force systems to move as close together as possible (to fit as many systems as possible onto
a page) while being spaced so that there is no blank space at the bottom of the page.

\paper {
between-system-padding = #0.1
between-system-space = #0.1
ragged-last-bottom = ##f
ragged-bottom = ##f

}

e Force the number of systems. This can help in two ways. Just setting a value, even the same
value as the number of systems being typeset by default, will sometimes cause more systems
to be fitted onto each page, as an estimation step is then bypassed, giving a more accurate
fit to each page. Also, forcing an actual reduction in the number of systems may save a
further page. For example, if the default layout has 11 systems, the following assignment
will force a layout with 10 systems.

\paper {
system-count = #10

}

e Avoid (or reduce) objects that increase the vertical size of a system. For example, volta
repeats (or alternate repeats) require extra space. If these repeats are spread over two
systems, they will take up more space than one system with the volta repeats and another
system without. For example, dynamics that ‘stick out’ of a system can be moved closer to
the staff:

ed c g\f ¢
\override DynamicText #'extra-offset = #'(-2.2 . 2.0)
e4d c g\f c

|
N @4

P

!

|
& ;: & ‘ ,“f_,;: &
f

e Alter the horizontal spacing via SpacingSpanner. For more details, see Section 4.5.3
[Changing horizontal spacing]|, page 362. The following example illustrates the default
spacing:

\score {
\relative c'' {
g4 e e2 |
f4 4 42 |
cd de f |
g4 g g2 |
gl e e2 |

Chapter 4: Spacing issues 374

The next example modifies common-shortest-duration from a value of 1/4 to 1/2. The
quarter note is the most common and shortest duration in this example, so by making this
duration longer, a ‘squeezing’ effect occurs:

\score {
\relative c'' {
g4 e e2 |
f4 4 42 |
cddef |
g4 g g2 |
g4 e e2 |
}
\layout {
\context {
\Score
\override SpacingSpanner
#'common-shortest-duration = #(ly:make-moment 1 2)

i
-%BAJ_J", S geteesteg

y g

The common-shortest-duration property cannot be modified dynamically, so it must al-
ways be placed in a \context block so that it applies to the whole score.

See also

Notation Reference: Section 4.1.2 [Page formatting], page 334, Section 4.5.3 [Changing hor-
izontal spacing], page 362.

Snippets: Section “Spacing” in Snippets.

Chapter 5: Changing defaults 375

5 Changing defaults

The purpose of LilyPond’s design is to provide the finest quality output by default. Nevertheless,
it may happen that you need to change this default layout. The layout is controlled through
a large number of ‘knobs and switches’ collectively called ‘properties’. A tutorial introduction
to accessing and modifying these properties can be found in the Learning Manual, see Section
“Tweaking output” in Learning Manual. This should be read first. This chapter covers similar
ground, but in a style more appropriate to a reference manual.

The definitive description of the controls available for tuning can be found in a separate
document: Section “the Internals Reference” in Internals Reference. That manual lists all the
variables, functions and options available in LilyPond. It is written as a HTML document, which
is available on-line, and is also included with the LilyPond documentation package.

Internally, LilyPond uses Scheme (a LISP dialect) to provide infrastructure. Overriding
layout decisions in effect accesses the program internals, which requires Scheme input. Scheme
elements are introduced in a .1y file with the hash mark #.!

5.1 Interpretation contexts

This section describes what contexts are, and how to modify them.

See also
Learning Manual: Section “Contexts and engravers” in Learning Manual.
Installed files: ‘ly/engraver-init.ly’, ‘ly/performer-init.ly’.
Snippets: Section “Contexts and engravers” in Snippets.

Internals Reference: Section “Contexts” in Internals Reference, Section “Engravers and Per-
formers” in Internals Reference.

5.1.1 Contexts explained

Contexts are arranged hierarchically:

Score - the master of all contexts

This is the top level notation context. No other context can contain a Score context. By default
the Score context handles the administration of time signatures and makes sure that items such
as clefs, time signatures, and key-signatures are aligned across staves.

A Score context is instantiated implicitly when a \score {...} or \layout {...2} block is
processed, or explicitly when a \new Score command is executed.

Top-level contexts - staff containers

StaffGroup

Groups staves while adding a bracket on the left side, grouping the staves together. The bar
lines of the contained staves are connected vertically. StaffGroup only consists of a collection
of staves, with a bracket in front and spanning bar lines.

ChoirStaff

Identical to StaffGroup except that the bar lines of the contained staves are not connected
vertically.

GrandStaff

1 Section “Scheme tutorial” in Learning Manual, contains a short tutorial on entering numbers, lists, strings,
and symbols in Scheme.

http://lilypond.org/doc/stable/Documentation/user/lilypond-internals/

Chapter 5: Changing defaults 376

A group of staves, with a brace on the left side, grouping the staves together. The bar lines
of the contained staves are connected vertically.

PianoStaff

Just like GrandStaff, but with support for instrument names to the left of each system.

Intermediate-level contexts - staves

Staff
Handles clefs, bar lines, keys, accidentals. It can contain Voice contexts.
RhythmicStaff
Like Staff but for printing rhythms. Pitches are ignored; the notes are printed on one line.
TabStaff

Context for generating tablature. By default lays the music expression out as a guitar
tablature, printed on six lines.

DrumStaff

Handles typesetting for percussion. Can contain DrumVoice

VaticanaStaff

Same as Staff, except that it is designed for typesetting a piece in gregorian style.
MensuralStaff

Same as Staff, except that it is designed for typesetting a piece in mensural style.

Bottom-level contexts - voices

Voice-level contexts initialise certain properties and start appropriate engravers. Being bottom-
level contexts, they cannot contain other contexts.

Voice

Corresponds to a voice on a staff. This context handles the conversion of dynamic signs,
stems, beams, super- and sub-scripts, slurs, ties, and rests. You have to instantiate this explicitly
if you require multiple voices on the same staff.

VaticanaVoice

Same as Voice, except that it is designed for typesetting a piece in gregorian style.
MensuralVoice

Same as Voice, with modifications for typesetting a piece in mensural style.
Lyrics

Corresponds to a voice with lyrics. Handles the printing of a single line of lyrics.
DrumVoice

The voice context used in a percussion staff.

FiguredBass

The context in which BassFigure objects are created from input entered in \figuremode
mode.

Tab Voice
The voice context used within a TabStaff context. Usually left to be created implicitly.
ChordNames

Typesets chord names.

Chapter 5: Changing defaults 377

5.1.2 Creating contexts
For scores with only one voice and one staff, contexts are created automatically. For more
complex scores, it is necessary to create them by hand. There are three commands that do this.
e The easiest command is \new, and it also the quickest to type. It is prepended to a music
expression, for example
\new type music expression
where type is a context name (like Staff or Voice). This command creates a new context,
and starts interpreting the music expression with that.
A practical application of \new is a score with many staves. Each part that should be on
its own staff, is preceded with \new Staff.
<<
\new Staff { c4 ¢ }

\new Staff { d4 d }
>>

0

Herr

oJ

The \new command may also give a name to the context,
\new type = id music

However, this user specified name is only used if there is no other context already earlier
with the same name.

e Like \new, the \context command also directs a music expression to a context object, but
gives the context an explicit name. The syntax is

\context type = id music

This form will search for an existing context of type type called id. If that context does not
exist yet, a new context with the specified name is created. This is useful if the context is
referred to later on. For example, when setting lyrics the melody is in a named context

\context Voice = "tenor" music

so the texts can be properly aligned to its notes,

\new Lyrics \lyricsto "temor" lyrics

Another possible use of named contexts is funneling two different music expressions into
one context. In the following example, articulations and notes are entered separately,

music = { c4 c4 }
arts = { s4-. s4-> }
They are combined by sending both to the same Voice context,

<<
\new Staff \context Voice = "A" \music
\context Voice = "A" \arts

>>
()

Chapter 5: Changing defaults 378

With this mechanism, it is possible to define an Urtext (original edition), with the option
to put several distinct articulations on the same notes.

The third command for creating contexts is
\context type music

This is similar to \context with = id, but matches any context of type type, regardless of
its given name.

This variant is used with music expressions that can be interpreted at several levels. For
example, the \applyOutput command (see Section 6.5.2 [Running a function on all layout
objects], page 432). Without an explicit \context, it is usually applied to Voice

\applyOutput #'context #function % apply to Voice
To have it interpreted at the Score or Staff level use these forms

\applyOutput #'Score #function
\applyOutput #'Staff #function

5.1.3 Modifying context plug-ins

Notation contexts (like Score and Staff) not only store properties, they also contain plug-ins
called ‘engravers’ that create notation elements. For example, the Voice context contains a
Note_head_engraver and the Staff context contains a Key_signature_engraver.

For a full a description of each plug-in, see Internals Reference — Translation +— Engravers.
Every context described in Internals Reference — Translation +— Context. lists the engravers
used for that context.

It can be useful to shuffle around these plug-ins. This is done by starting a new context with
\new or \context, and modifying it,

\new context \with {
\consists ...
\consists ...
\remove ...
\remove ...

etc.

¥

.music..

where the ... should be the name of an engraver. Here is a simple example which removes
Time_signature_engraver and Clef_engraver from a Staff context,

<<

>>

\new Staff {

}

f2 g

\new Staff \with {

}

}

\remove "Time_signature_engraver"
\remove "Clef_engraver"

{

f2 g2

Chapter 5: Changing defaults 379

"4 i
A |
[fan YA W] -~
NIV, &
i

|

p=

, L4

In the second staff there are no time signature or clef symbols. This is a rather crude method
of making objects disappear since it will affect the entire staff. This method also influences the
spacing, which may or may not be desirable. More sophisticated methods of blanking objects
are shown in Section “Visibility and color of objects” in Learning Manual.

The next example shows a practical application. Bar lines and time signatures are normally
synchronized across the score. This is done by the Timing_translator and Default_bar_line_
engraver. This plug-in keeps an administration of time signature, location within the measure,
etc. By moving these engraver from Score to Staff context, we can have a score where each
staff has its own time signature.

\new Score \with {
\remove "Timing_translator"
\remove "Default_bar_line_engraver"
T} <<
\new Staff \with {
\consists "Timing_translator"
\consists "Default_bar_line_engraver"
A
\time 3/4
cd ccccec
b
\new Staff \with {
\consists "Timing_translator"
\consists "Default_bar_line_engraver"

P A
\time 2/4
cd ccccc
}
>>
n‘
X—3 . .
RS S S i ——— ——
4 o0 o o6 o ¢

S ¢
e

Known issues and warnings

Usually the order in which the engravers are specified does not matter, but in a few special cases
the order is important, for example where one engraver writes a property and another reads
it, or where one engraver creates a grob and another must process it. The order in which the
engravers are specified is the order in which they are called to carry out their processing.

The following orderings are important: the Bar_engraver must normally be first, and the
New_fingering_engraver must come before the Script_column_engraver. There may be
others with ordering dependencies.

Chapter 5: Changing defaults 380

5.1.4 Changing context default settings

The context settings which are to be used by default in Score, Staff and Voice contexts may
be specified in a \layout block, as illustrated in the following example. The \layout block
should be placed within the \score block to which it is to apply, but outside any music.

Note that the \set command itself and the context must be omitted when the context default
values are specified in this way:

\score {
\relative c'' {
a4""Really small, thicker stems, no time signature" a a a

aaaa
}
\layout {
\context {
\Staff
fontSize = #-4
\override Stem #'thickness = #4.0
\remove "Time_signature_engraver"
}
}
}
Really small, thicker stems, no time signature
[4
%
>3

In this example, the \Staff command specifies that the subsequent specifications are to be
applied to all staves within this score block.

Modifications can be made to the Score context or all Voice contexts in a similar way.

Known issues and warnings

It is not possible to collect context changes in a variable and apply them to a \context definition
by referring to that variable.

The \RemoveEmptyStaffContext will overwrite your current \Staff settings. If you wish
to change the defaults for a staff which uses \RemoveEmptyStaffContext, you must do so after
calling \RemoveEmptyStaffContext, ie

\layout {
\context {
\RemoveEmptyStaffContext

\override Stem #'thickness = #4.0
}
}

5.1.5 Defining new contexts

Specific contexts, like Staff and Voice, are made of simple building blocks. It is possible to
create new types of contexts with different combinations of engraver plug-ins.

The next example shows how to build a different type of Voice context from scratch. It
will be similar to Voice, but only prints centered slash note heads. It can be used to indicate
improvisation in jazz pieces,

Chapter 5: Changing defaults 381

o) | ad lib undress
£ I { V 4 V 4 V4 V 4 V 4 V 4

I I y 4 V4 V4 V4 V4 V 4 O
JJ)

while playing :)

These settings are defined within a \context block inside a \layout block,

\layout {
\context {

}
+

In the following discussion, the example input shown should go in place of the ... in the
previous fragment.

First it is necessary to define a name for the new context:
\name ImproVoice

Since it is similar to the Voice, we want commands that work on (existing) Voices to remain
working. This is achieved by giving the new context an alias Voice,

\alias Voice

The context will print notes and instructive texts, so we need to add the engravers which
provide this functionality,

\consists Note_heads_engraver
\consists Text_engraver

but we only need this on the center line,

\consists Pitch_squash_engraver
squashedPosition = #0

The Section “Pitch_squash_engraver” in Internals Reference modifies note heads (created by
Section “Note_heads_engraver” in Internals Reference) and sets their vertical position to the
value of squashedPosition, in this case 0, the center line.

The notes look like a slash, and have no stem,

\override NoteHead #'style = #'slash
\override Stem #'transparent = ##t

All these plug-ins have to cooperate, and this is achieved with a special plug-in, which must
be marked with the keyword \type. This should always be Engraver_group.

\type "Engraver_group"
Put together, we get

\context {
\name ImproVoice
\type "Engraver_group"
\consists "Note_heads_engraver"
\consists "Text_engraver"
\consists Pitch_squash_engraver
squashedPosition = #0
\override NoteHead #'style = #'slash
\override Stem #'transparent = #i#t
\alias Voice

Contexts form hierarchies. We want to hang the ImproVoice under Staff, just like normal
Voices. Therefore, we modify the Staff definition with the \accepts command,
\context {

\Staff

\accepts ImproVoice

Chapter 5: Changing defaults 382

The opposite of \accepts is \denies, which is sometimes needed when reusing existing
context definitions.

Putting both into a \layout block, like
\layout {

\context {
\name ImproVoice

}
\context {
\Staff
\accepts "ImproVoice"

}

Then the output at the start of this subsection can be entered as

\relative c'' {
a4 d8 bes8
\new ImproVoice {
c4""ad 1lib" c
c4 c”"undress"
c c_"while playing :)"
}
al
}

5.1.6 Aligning contexts

New contexts may be aligned above or below existing contexts. This could be useful in setting
up a vocal staff (Section “Vocal ensembles” in Learning Manual) and in ossia,

{3

C@a

B R a e

Contexts like PianoStaff can contain other contexts nested within them. Contexts which
are acceptable for nesting are defined by the “accepts” list of a context. Contexts which are not
in this list are placed below the outer context in the printed score. For example, the PianoStaff
context is defined by default to accept Staff and FiguredBass contexts within it, but not (for
example) a Lyrics context. So in the following structure the lyrics are placed below the piano
staff rather than between the two staves:

p—_—
N (e

G

\new PianoStaff
<<
\new Staff { e4 d c2 }
\addlyrics { Three blind mice }
\new Staff {
\clef "bass"
{c,1}%
}

Chapter 5: Changing defaults 383

>>
()
)" 4
/\ r £)
'(\\ \ W
=S
6)
il OO £
P \ WK ®]
Three blind mice

The “accepts” list of a context can be modified to include additional nested contexts, so if
we wanted the lyrics to appear between the two staves we could use:

\new PianoStaff \with { \accepts Lyrics }
<<

\new Staff { e4 d c2 }

\addlyrics { Three blind mice }

\new Staff {

\clef "bass"
{c,1}
}
>>
()
()" 4
4\ y £)
'(\'\ \ U
.6.
Three blind mice
6)
—Je fo
k . \ W [@)

The opposite of \accepts is \denies; this removes a context from the “accepts” list.

5.2 Explaining the Internals Reference

5.2.1 Navigating the program reference
Suppose we want to move the fingering indication in the fragment below:
c-2

\stemUp
f
#
SV - |
U |

If you visit the documentation on fingering instructions (in [Fingering instructions|, page 150),
you will notice:

See also

Internals Reference: Section “Fingering” in Internals Reference.

Chapter 5: Changing defaults 384

The programmer’s reference is available as an HTML document. It is highly recommended
that you read it in HTML form, either online or by downloading the HTML documentation.
This section will be much more difficult to understand if you are using the PDF manual.

Follow the link to Section “Fingering” in Internals Reference. At the top of the page, you
will see

Fingering objects are created by: Section “Fingering_engraver” in Internals Reference and
Section “New_fingering_engraver” in Internals Reference.

By following related links inside the program reference, we can follow the flow of information
within the program:

e Section “Fingering” in Internals Reference: Section “Fingering” in Internals Reference ob-
jects are created by: Section “Fingering_engraver” in Internals Reference

e Section “Fingering_engraver” in Internals Reference: Music types accepted: Section
“fingering-event” in Internals Reference

e Section “fingering-event” in Internals Reference: Music event type fingering-event is in
Music expressions named Section “FingeringEvent” in Internals Reference

This path goes against the flow of information in the program: it starts from the output,
and ends at the input event. You could also start at an input event, and read with the flow of
information, eventually ending up at the output object(s).

The program reference can also be browsed like a normal document. It contains chapters on
Music definitions on Section “Translation” in Internals Reference, and the Section “Backend”
in Internals Reference. Every chapter lists all the definitions used and all properties that may
be tuned.

5.2.2 Layout interfaces

The HTML page that we found in the previous section describes the layout object called Section
“Fingering” in Internals Reference. Such an object is a symbol within the score. It has properties
that store numbers (like thicknesses and directions), but also pointers to related objects. A layout
object is also called a Grob, which is short for Graphical Object. For more details about Grobs,
see Section “grob-interface” in Internals Reference.

The page for Fingering lists the definitions for the Fingering object. For example, the page
says
padding (dimension, in staff space):
0.5
which means that the number will be kept at a distance of at least 0.5 of the note head.

Each layout object may have several functions as a notational or typographical element. For
example, the Fingering object has the following aspects

e I[ts size is independent of the horizontal spacing, unlike slurs or beams.

e [t is a piece of text. Granted, it is usually a very short text.

e That piece of text is typeset with a font, unlike slurs or beams.

e Horizontally, the center of the symbol should be aligned to the center of the note head.

e Vertically, the symbol is placed next to the note and the staff.

e The vertical position is also coordinated with other superscript and subscript symbols.

Each of these aspects is captured in so-called interfaces, which are listed on the Section

“Fingering” in Internals Reference page at the bottom

This object supports the following interfaces: Section “item-interface” in Internals Reference,
Section “self-alignment-interface” in Internals Reference, Section “side-position-interface” in In-
ternals Reference, Section “text-interface” in Internals Reference, Section “text-script-interface”

Chapter 5: Changing defaults 385

in Internals Reference, Section “font-interface” in Internals Reference, Section “finger-interface”
in Internals Reference, and Section “grob-interface” in Internals Reference.

Clicking any of the links will take you to the page of the respective object interface. Each in-
terface has a number of properties. Some of them are not user-serviceable (‘Internal properties’),
but others can be modified.

We have been talking of the Fingering object, but actually it does not amount to much.
The initialization file (see Section “Other sources of information” in Learning Manual) ‘scm/
define-grobs.scm’ shows the soul of the ‘object’,

(Fingering
((padding . 0.5)
(avoid-slur . around)
(slur-padding . 0.2)
(staff-padding . 0.5)
(self-alignment-X . 0)
(self-alignment-Y . 0)
(script-priority . 100)
(stencil . ,ly:text-interface::print)

(direction . ,ly:script-interface::calc-direction)
(font-encoding . fetaNumber)
(font-size . -5) ; don't overlap when next to heads.

(meta . ((class . Item)

(interfaces . (finger-interface
font-interface
text-script-interface
text-interface
side-position-interface
self-alignment-interface
item-interface))))))

As you can see, the Fingering object is nothing more than a bunch of variable settings, and
the webpage in the Internals Reference is directly generated from this definition.

5.2.3 Determining the grob property

Recall that we wanted to change the position of the 2 in

c-2
\stemUp
f
%
SV - |
U |

Since the 2 is vertically positioned next to its note, we have to meddle with the interface
associated with this positioning. This is done using side-position-interface. The page for
this interface says

side-position-interface

Position a victim object (this one) next to other objects (the support). The property direction
signifies where to put the victim object relative to the support (left or right, up or down?)

Below this description, the variable padding is described as
padding (dimension, in staff space)

Add this much extra space between objects that are next to each other.

Chapter 5: Changing defaults 386

By increasing the value of padding, we can move the fingering away from the note head. The
following command inserts 3 staff spaces of white between the note and the fingering:

\once \override Voice.Fingering #'padding = #3

Inserting this command before the Fingering object is created, i.e., before c2, yields the
following result:

\once \override Voice.Fingering #'padding = #3

c-2
\stemUp
f
2
ANV = |
Y] |

In this case, the context for this tweak is Voice. This fact can also be deduced from the
program reference, for the page for the Section “Fingering_engraver” in Internals Reference
plug-in says

Fingering_engraver is part of contexts: ... Section “Voice” in Internals Reference

5.2.4 Naming conventions
Another thing that is needed, is an overview of the various naming conventions:

scheme functions: lowercase-with-hyphens (incl. one-word names) scheme functions: ly:plus-
scheme-style music events, music classes and music properties: as-scheme-functions Grob inter-
faces: scheme-style backend properties: scheme-style (but X and Y!) contexts (and MusicExpres-
sions and grobs): Capitalized or CamelCase context properties: lowercaseFollowedByCamelCase
engravers: Capitalized_followed_by_lowercase_and_with_underscores

Which of these are conventions and which are rules? Which are rules of the underlying
language, and which are LP-specific?

5.3 Modifying properties

5.3.1 Overview of modifying properties

Each context is responsible for creating certain types of graphical objects. The settings used for
printing these objects are also stored by context. By changing these settings, the appearance of
objects can be altered.

The syntax for this is
\override context.name #'property = #value

Here name is the name of a graphical object, like Stem or NoteHead, and property is an
internal variable of the formatting system (‘grob property’ or ‘layout property’). The latter is
a symbol, so it must be quoted. The subsection Section 5.3 [Modifying properties|, page 386,
explains what to fill in for name, property, and value. Here we only discuss the functionality of
this command.

The command
\override Staff.Stem #'thickness = #4.0

makes stems thicker (the default is 1.3, with staff line thickness as a unit). Since the command
specifies Staff as context, it only applies to the current staff. Other staves will keep their
normal appearance. Here we see the command in action:

Chapter 5: Changing defaults 387

c4
\override Staff.Stem #'thickness = #4.0
c4
cd
c4
SE====
U | | | | | |

The \override command changes the definition of the Stem within the current Staff. After
the command is interpreted all stems are thickened.

Analogous to \set, the context argument may be left out, causing the default context Voice
to be used. Adding \once applies the change during one timestep only.

c4
\once \override Stem #'thickness = #4.0
c4
cd

The \override must be done before the object is started. Therefore, when altering Spanner
objects such as slurs or beams, the \override command must be executed at the moment when
the object is created. In this example,

\override Slur #'thickness = #3.0
c8[(¢
\override Beam #'thickness
c8 cl)

#0.6

0

/

(¢!
oJ

the slur is fatter but the beam is not. This is because the command for Beam comes after the
Beam is started, so it has no effect.

Analogous to \unset, the \revert command for a context undoes an \override command;
like with \unset, it only affects settings that were made in the same context. In other words,
the \revert in the next example does not do anything.

\override Voice.Stem #'thickness = #4.0
\revert Staff.Stem #'thickness

Some tweakable options are called ‘subproperties’ and reside inside properties. To tweak
those, use commands of the form

\override context.name #'property #'subproperty = #value
such as

\override Stem #'(details beamed-lengths) = #'(4 4 3)

Chapter 5: Changing defaults 388

See also

Internals: Section “OverrideProperty” in Internals Reference, Section “RevertProperty” in
Internals Reference, Section “PropertySet” in Internals Reference, Section “Backend” in Inter-
nals Reference, and Section “All layout objects” in Internals Reference.

Known issues and warnings

The back-end is not very strict in type-checking object properties. Cyclic references in Scheme
values for properties can cause hangs or crashes, or both.

5.3.2 The \set command

Each context can have different properties, variables contained in that context. They can be
changed during the interpretation step. This is achieved by inserting the \set command in the
music,
\set context.prop = #value
For example,
R1x%2
\set Score.skipBars = ##t
R1x2

o) 2

[[av Y W
ANV

oJ

This command skips measures that have no notes. The result is that multi-rests are con-
densed. The value assigned is a Scheme object. In this case, it is #t, the boolean True value.
If the context argument is left out, then the current bottom-most context (typically
ChordNames, Voice, or Lyrics) is used. In this example,
c8 ccc
\set autoBeaming = ##f
c8 ccc

]
A1V I I v/ J J J
rr rr

U T T

the context argument to \set is left out, so automatic beaming is switched off in the current
Section “Voice” in Internals Reference. Note that the bottom-most context does not always
contain the property that you wish to change — for example, attempting to set the skipBars
property (of the bottom-most context, in this case Voice) will have no effect.

R1%2

\set skipBars = ##t

R1x%2

0

o

Contexts are hierarchical, so if a bigger context was specified, for example Staff, then the
change would also apply to all Voices in the current stave. The change is applied ‘on-the-fly’,
during the music, so that the setting only affects the second group of eighth notes.

There is also an \unset command,

Chapter 5: Changing defaults 389

\unset context.prop

which removes the definition of prop. This command removes the definition only if it is set in
context, so

\set Staff.autoBeaming = ##f

introduces a property setting at Staff level. The setting also applies to the current Voice.
However,

\unset Voice.autoBeaming

does not have any effect. To cancel this setting, the \unset must be specified on the same level
as the original \set. In other words, undoing the effect of Staff.autoBeaming = ##f requires

\unset Staff.autoBeaming

Like \set, the context argument does not have to be specified for a bottom context, so the
two statements

\set Voice.autoBeaming = #it
\set autoBeaming = ##t

are equivalent.
Settings that should only apply to a single time-step can be entered with \once, for example
in
cd
\once \set fontSize = #4.7

cd
c4

the property fontSize is unset automatically after the second note.

A full description of all available context properties is in the program reference, see Transla-
tion — Tunable context properties.

5.3.3 The \override command
Commands which change output generally look like
\override Voice.Stem #'thickness = #3.0
To construct this tweak we must determine these bits of information:
e the context: here Voice.
e the layout object: here Stem.
e the layout property: here thickness.
e a sensible value: here 3.0.
Some tweakable options are called ‘subproperties’ and reside inside properties. To tweak
those, use commands in the form
\override Stem #'(details beamed-lengths) = #'(4 4 3)

For many properties, regardless of the data type of the property, setting the property to false
(##f) will result in turning it off, causing LilyPond to ignore that property entirely. This is
particularly useful for turning off grob properties which may otherwise be causing problems.

We demonstrate how to glean this information from the notation manual and the program
reference.

Chapter 5: Changing defaults 390

5.3.4 The \tweak command

In some cases, it is possible to take a short-cut for tuning graphical objects. For objects that are
created directly from an item in the input file, you can use the \tweak command. For example:
< cC

\tweak #'color #red

d

g

\tweak #'duration-log #1

a
> 4
-\tweak #'padding #38

A

But the main use of the \tweak command is to modify just one of a number of notation
elements which start at the same musical moment, like the notes of a chord, or tuplet brackets
which start at the same time.

For an introduction to the syntax and uses of the tweak command see Section “Tweaking
methods” in Learning Manual.

The \tweak command sets a property in the following object directly, without requiring the
grob name or context to be specified. For this to work, it is necessary for the \tweak command
to remain immediately adjacent to the object to which it is to apply after the input file has
been converted to a music stream. This is often not the case, as many additional elements are
inserted into the music stream implicitly. For example, when a note which is not part of a chord
is processed, Lilypond implicitly inserts a ChordEvent event before the note, so separating the
tweak from the note. However, if chord symbols are placed round the tweak and the note, the
\tweak command comes after the ChordEvent in the music stream, so remaining adjacent to
the note, and able to modify it.

So, this works:
<\tweak #'color #red c>4

but this does not:
\tweak #'color #red c4

When several similar items are placed at the same musical moment, the \override command
cannot be used to modify just one of them — this is where the \tweak command must be used.
Items which may appear more than once at the same musical moment include the following:

Chapter 5: Changing defaults 391

e note heads of notes inside a chord
e articulation signs on a single note
e ties between notes in a chord

e tuplet brackets starting at the same time

and \tweak may be used to modify any single occurrence of these items.

Notably the \tweak command cannot be used to modify stems, beams or accidentals directly,
since these are generated later by note heads, rather than by music elements in the input stream.
Nor can a \tweak command be used to modify clefs or time signatures, since these become
separated from any preceding \tweak command in the input stream by the automatic insertion
of extra elements required to specify the context.

But the \tweak command can be used as an alternative to the \override command to modify
those notational elements that do not cause any additional implicit elements to be added before
them in the music stream. For example, slurs may be modified in this way:

c-\tweak #'thickness #5 (d e f)

0
)" 4
7\ r)
[(oY W]

R

Also several \tweak commands may be placed before a notational element — all affect it:

c

-\tweak #'style #'dashed-line

-\tweak #'dash-fraction #0.2

-\tweak #'thickness #3

-\tweak #'color #red
\glissando

f 1

T ——

[Y) s

The music stream which is generated from a section of an input file, including any auto-
matically inserted elements, may be examined, see Section 6.3.1 [Displaying music expressions],
page 423. This may be helpful in determining what may be modified by a \tweak command.

See also
Learning Manual: Section “Tweaking methods” in Learning Manual.

Notation Reference: Section 6.3.1 [Displaying music expressions|, page 423.

Known issues and warnings
The \tweak command cannot be used inside a variable.
The \tweak commands cannot be used in \lyricmode.

The \tweak command cannot be used to modify the control points of just one of several ties
in a chord, other than the first one encountered in the input file.

Chapter 5: Changing defaults 392

5.3.5 \set vs. \override

We have seen two methods of changing properties: \set and \override. There are actually
two different kinds of properties.

Contexts can have properties, which are usually named in studlyCaps. They mostly control
the translation from music to notation, eg. localKeySignature (for determining whether to
print accidentals), measurePosition (for determining when to print a bar line). Context prop-
erties can change value over time while interpreting a piece of music; measurePosition is an
obvious example of this. Context properties are modified with \set.

There is a special type of context property: the element description. These properties are
named in StudlyCaps (starting with capital letters). They contain the ‘default settings’ for said
graphical object as an association list. See ‘scm/define-grobs.scm’ to see what kind of settings
there are. Element descriptions may be modified with \override.

\override is actually a shorthand;
\override context.name #'property = #value
is more or less equivalent to

\set context.name #'property = #(cons (cons 'property value) <previous value of con-
text)

The value of context (the alist) is used to initialize the properties of individual grobs. Grobs
also have properties, named in Scheme style, with dashed-words. The values of grob properties
change during the formatting process: formatting basically amounts to computing properties
using callback functions.

fontSize is a special property: it is equivalent to entering \override ... #'font-size for
all pertinent objects. Since this is a common change, the special property (modified with \set)
was created.

5.4 Useful concepts and properties

5.4.1 Input modes

The way in which the notation contained within an input file is interpreted is determined by
the current input mode.

Chord mode

This is activated with the \chordmode command, and causes input to be interpreted with
the syntax of chord notation, see Section 2.7 [Chord notation], page 255. Chords are rendered
as notes on a staff.

Chord mode is also activated with the \chords command. This also creates a new
ChordNames context and causes the following input to be interpreted with the syntax of chord
notation and rendered as chord names in the ChordNames context, see [Printing chord names],
page 260.

Drum mode

This is activated with the \drummode command, and causes input to be interpreted with the
syntax of drum notation, see [Basic percussion notation], page 243.

Drum mode is also activated with the \drums command. This also creates a new DrumStaff
context and causes the following input to be interpreted with the syntax of drum notation and
rendered as drum symbols on a drum staff, see [Basic percussion notation|, page 243.

Figure mode

This is activated with the \figuremode command, and causes input to be interpreted with
the syntax of figured bass, see [Entering figured bass], page 267.

Chapter 5: Changing defaults 393

Figure mode is also activated with the \figures command. This also creates a new
FiguredBass context and causes the following input to be interpreted with the figured bass
syntax and rendered as figured bass symbols in the FiguredBass context, see [Introduction to
figured bass|, page 267.

Fret and tab modes
There are no special input modes for entering fret and tab symbols.

To create tab diagrams, enter notes or chords in note mode and render them in a TabStaff
context, see [Default tablatures], page 217.

To create fret diagrams above a staff, you have two choices. You can either use the
FretBoards context (see [Automatic fret diagrams|, page 237 or you can enter them as a markup
above the notes using the \fret-diagram command (see [Fret diagram markups], page 221).

Lyrics mode

This is activated with the \1yricmode command, and causes input to be interpreted as lyric
syllables with optional durations and associated lyric modifiers, see Section 2.1 [Vocal music]|,
page 183.

Lyric mode is also activated with the \addlyrics command. This also creates a new Lyrics
context and an implicit \lyricsto command which associates the following lyrics with the
preceding music.

Markup mode

This is activated with the \markup command, and causes input to be interpreted with the
syntax of markup, see Section B.8 [Text markup commands], page 463.

Note mode

This is the default mode or it may be activated with the \notemode command. Input is
interpreted as pitches, durations, markup, etc and typeset as musical notation on a staff.

It is not normally necessary to specify note mode explicitly, but it may be useful to do so
in certain situations, for example if you are in lyric mode, chord mode or any other mode and
want to insert something that only can be done with note mode syntax.

For example, to indicate dynamic markings for the verses of a choral pieces it is necessary to
enter note mode to interpret the markings:

{ cd c4 c4 c4

\addlyrics {
\notemode{\set stanza = \markup{ \dynamic f 1. } }
To be sung loudly

3

\addlyrics {
\notemode{\set stanza = \markup{ \dynamic p 2. } }
To be sung quietly

3

ANV I I I I

U | | | |
J'1. Tobe sung loudly

p 2. Tobe sung quietly

Chapter 5: Changing defaults 394

5.4.2 Direction and placement

In typesetting music the direction and placement of many items is a matter of choice. For
example, the stems of notes can be directed up or down; lyrics, dynamics, and other expressive
marks may be placed above or below the staff; text may be aligned left, right or center; etc.
Most of these choices may be left to be determined automatically by LilyPond, but in some
cases it may be desirable to force a particular direction or placement.

Default actions

By default some directions are always up or always down (e.g. dynamics or fermata), while
other things can alternate between up or down based on the stem direction (like slurs or accents).

Context layout order

Contexts are normally positioned in a system from top to bottom in the order in which
they are encountered. Note, however, that a context will be created implicitly if a command
is encountered when there is no suitable context available to contain it. When contexts are
nested, the outer context will exclude inner contexts which are not included in its “accepts” list;
excluded contexts will be repositioned below the outer context.

The default order in which contexts are laid out and the “accepts” list can be changed, see
Section 5.1.6 [Aligning contexts]|, page 382.
Articulation direction indicators

~

When adding articulations to notes the direction indicator, ~ (meaning “up”), _ (meaning
“down”) or - (meaning “use default direction”), can usually be omitted, in which case - is
assumed. But a direction indicator is always required before

e \tweak commands
e \markup commands
e \tag commands
e string markups, e.g. -"string"
e fingering instructions, e.g. -1
e articulation shortcuts, e.g. —., ->, ——
The direction property
The position or direction of many layout objects is controlled by the direction property.

The value of the direction property may be set to 1, meaning “up” or “above”, or to
-1, meaning “down” or “below”. The symbols UP and DOWN may be used instead of 1 and
-1 respectively. The default direction may be specified by setting direction to 0 or CENTER.
Alternatively, in many cases predefined commands exist to specify the direction. These are all
of the form

\xxxUp, xxxDown, xxxNeutral

where xxxNeutral means “use the default direction”. See Section “Within-staff objects” in
Learning Manual.

In a few cases, arpeggio being the only common example, the value of the direction property
specifies whether the object is to be placed to the right or left of the parent object. In this case
-1 or LEFT means “to the left” and 1 or RIGHT means “to the right”. 0 or CENTER means “use
the default” direction, as before.

5.4.3 Distances and measurements

Distances in LilyPond are of two types: absolute and scaled.

Absolute distances are used for specifying margins, indents, and other page layout details,
and are by default specified in millimeters. Distances may be specified in other units by following
the quantity by \mm, \cm, \in (inches), or \pt (points, 1/72.27 of an inch). Page layout distances

Chapter 5: Changing defaults 395

can also be specified in scalable units (see the following paragraph) by appending \staff-space
to the quantity. Page layout is described in detail in Section 4.1.2 [Page formatting], page 334.

Scaled distances are always specified in units of the staff-space or, rarely, the half staff-
space. The staff-space is the distance between two adjacent staff lines. The default value can be
changed globally by setting the global staff size, or it can be overridden locally by changing the
staff-space property of StaffSymbol. Scaled distances automatically scale with any change
to the either the global staff size or the staff-space property of StaffSymbol, but fonts scale
automatically only with changes to the global staff size. The global staff size thus enables the
overall size of a rendered score to be easily varied. For the methods of setting the global staff
size see Section 4.2.1 [Setting the staff size], page 338.

If just a section of a score needs to be rendered to a different scale, for example an ossia
section or a footnote, the global staff size cannot simply be changed as this would affect the
entire score. In such cases the change in size is made by overriding both the staff-space
property of StaffSymbol and the size of the fonts. A Scheme function, magstep, is available to
convert from a font size change to the equivalent change in staff-space. For an explanation
and an example of its use, see Section “Length and thickness of objects” in Learning Manual.

See also
Learning Manual: Section “Length and thickness of objects” in Learning Manual.

Notation Reference: Section 4.1.2 [Page formatting], page 334, Section 4.2.1 [Setting the staff
size|, page 338.

5.4.4 Staff symbol properties

The vertical position of staff lines and the number of staff lines can be defined at the same time.
As the following example shows, note positions are not influenced by the staff line positions.

Note: The 'line-positions property overrides the 'line-count property. The number of staff
lines is implicitly defined by the number of elements in the list of values for 'line-positions.

\new Staff \with {

\override StaffSymbol #'line-positions = #'(7 3 0 -4 -6 -7)
}
{ad e £Db | dl}

@5!3»
P

.

-

»
N—

The width of a staff can be modified. The units are staff spaces. The spacing of objects
inside the staff is not affected by this setting.

\new Staff \with {

\override StaffSymbol #'width = #23
}
{ade £b| dl}

Chapter 5: Changing defaults 396

5.4.5 Spanners

Many objects of musical notation extend over several notes or even several bars. Examples are
slurs, beams, tuplet brackets, volta repeat brackets, crescendi, trills, and glissandi. Such objects
are collectively called “spanners”, and have special properties to control their appearance and
behaviour. Some of these properties are common to all spanners; others are restricted to a
sub-set of the spanners.

All spanners support the spanner-interface. A few, esentially those that draw a straight
line between the two objects, support in addition the 1ine-spanner-interface.

Using the spanner-interface
This interface provides two properties that apply to several spanners.

The minimum-length property

The minimum length of the spanner is specified by the minimum-length property. Increasing
this usually has the necessary effect of increasing the spacing of the notes between the two end
points. However, this override has no effect on many spanners, as their length is determined by
other considerations. A few examples where it is effective are shown below.
a“a
a

% increase the length of the tie
-\tweak #'minimum-length #5

al

\compressFullBarRests

R1%23

% increase the length of the rest bar

\once \override MultiMeasureRest #'minimum-length = #20
R1%23

al

0 23 23

y £) | T | |
O O I 1 I 1 <«

"4
[arY
AN1VJ

oJ

—~

7

a\<aaal!

% increase the length of the hairpin
\override Hairpin #'minimum-length = #20
al\aaa\l

() | | | |

"4 I I I I

;i j "
[Y) —_

This override can also be used to increase the length of slurs and phrasing slurs:

a(a)
a

Chapter 5: Changing defaults 397

-\tweak #'minimum-length #5
(a

a\(a\)

a

-\tweak #'minimum-length #5
\(a\)

() | |

"4 I I

oJ

For some layout objects, the minimum-length property becomes effective only if the set-
spacing-rods procedure is called explicitly. To do this, the springs-and-rods property should
be set to ly:spanner: :set-spacing-rods. For example, the minimum length of a glissando
has no effect unless the springs-and-rods property is set:

% default
e \glissando c'

% not effective alone
\once \override Glissando #'minimum-length = #20
e, \glissando c'

% effective only when both overrides are present

\once \override Glissando #'minimum-length = #20

\once \override Glissando #'springs-and-rods = #ly:spanner::set-spacing-rods
e, \glissando c'

&

e) |

The same is true of the Beam object:

% not effective alomne
\once \override Beam #'minimum-length = #20
e8 e e e

% effective only when both overrides are present

\once \override Beam #'minimum-length = #20

\once \override Beam #'springs-and-rods = #ly:spanner::set-spacing-rods
e8 e e e

)" 4
£\ r £} | [| 1 | 1
[[av Y I | | I I I

1 1
e e des r — E——

The to-barline property

The second useful property of the spanner-interface is to-barline. By default this is
true, causing hairpins and other spanners which are terminated on the first note of a measure
to end instead on the immediately preceding bar line. If set to false, the spanner will extend
beyond the bar line and end on the note itself:

Chapter 5: Changing defaults 398

a\< aaaa\! aaa \break
\override Hairpin #'to-barline = ##f
a\<aaaall aaa

w0
>

U<

This property is not effective for all spanners. For example, seting it to #t has no effect on
slurs or phrasing slurs or on other spanners for which terminating on the bar line would not be
meaningful.

Using the line-spanner-interface
Objects which support the 1ine-spanner-interface include

e DynamicTextSpanner

Glissando

TextSpanner

TrillSpanner

VoiceFollower

The routine responsible for drawing the stencils for these spanners is ly:line-
interface: :print. This routine determines the exact location of the two end points and
draws a line between them, in the style requested. The locations of the two end points of
the spanner are computed on-the-fly, but it is possible to override their Y-coordinates. The
properties which need to be specified are nested two levels down within the property hierarchy,
but the syntax of the \override command is quite simple:

e2 \glissando b

\once \override Glissando #'(bound-details left Y) = #3
\once \override Glissando #'(bound-details right Y) = #-2
e2 \glissando b

)" 4 7 7

4\ r) P P
[(oY W] = =
53 | |

The units for the Y property are staff-spaces, with the center line of the staff being the
zero point. For the glissando, this is the value for Y at the X-coordinate corresponding to the
center point of each note head, if the line is imagined to be extended to there.

If Y is not set, the value is computed from the vertical position of the corresponding attach-
ment point of the spanner.

In case of a line break, the values for the end points are specified by the left-broken and
right-broken sub-lists of bound-details. For example:

\override Glissando #'breakable = #i#t
\override Glissando #'(bound-details right-broken Y) = #-3
cl \glissando \break

Chapter 5: Changing defaults 399

f1

0
iw(ﬁ ¢
¢

A number of further properties of the left and right sub-lists of the bound-details prop-
erty may be modified in the same way as Y:

Y

This sets the Y-coordinate of the end point, in staff-spaces offset from the staff
center line. By default, it is the center of the bound object, so a glissando points to
the vertical center of the note head.

For horizontal spanners, such as text spanners and trill spanners, it is hardcoded to
0.

attach-dir

stencil

text

This determines where the line starts and ends in the X-direction, relative to the
bound object. So, a value of -1 (or LEFT) makes the line start/end at the left side
of the note head it is attached to.

This is the absolute X-coordinate of the end point. It is usually computed on the
fly, and overriding it has little useful effect.

Line spanners may have symbols at the beginning or end, which is contained in this
sub-property. This is for internal use; it is recommended that text be used instead.

This is a markup that is evaluated to yield the stencil. It is used to put cresc., tr
and other text on horizontal spanners.

\override TextSpanner #'(bound-details left text)
= \markup { \small \bold Slower }
c2\startTextSpan b c a\stopTextSpan

o Slower_ -
)" 4 |
£\ o 7 =) 7 |
[(oY 2| | 7
ANV | |
[y | |

stencil-align-dir-y
stencil-offset

Without setting one of these, the stencil is simply put at the end-point, centered on
the line, as defined by the X and Y sub-properties. Setting either stencil-align-
dir-y or stencil-offset will move the symbol at the edge vertically relative to
the end point of the line:
\override TextSpanner

#' (bound-details left stencil-align-dir-y) = #-2
\override TextSpanner

#' (bound-details right stencil-align-dir-y) = #UP

\override TextSpanner
#' (bound-details left text) = #"ggg"

Chapter 5: Changing defaults 400

\override TextSpanner
#' (bound-details right text) = #"hhh"
c4"\startTextSpan ¢ ¢ c \stopTextSpan

888
o) " 7 "hhh
)" 4
(€
_\I
[Y) 4 o 0 @

Note that negative values move the text up, contrary to the effect that might be
expected, as a value of -1 or DOWN means align the bottom edge of the text with the
spanner line. A value of 1 or UP aligns the top edge of the text with the spanner
line.

arrow Setting this sub-property to #t produces an arrowhead at the end of the line.

padding This sub-property controls the space between the specified end point of the line and
the actual end. Without padding, a glissando would start and end in the center of
each note head.

The music function \endSpanners terminates the spanner which starts on the immediately
following note prematurely. It is terminated after exactly one note, or at the following bar line
if to-barline is true and a bar line occurs before the next note.

\endSpanners
c2 \startTextSpan c2 c2
\endSpanners
c2 \< c2 c2

G

e (7 l(l 7 7 lfl lfl
/

| | |

I I I

e

When using \endSpanners it is not necessary to close \startTextSpan with \stopTextSpan,
nor is it necessary to close hairpins with \!.

See also

Internals Reference: Section “TextSpanner” in Internals Reference, Section “Glissando” in
Internals Reference, Section “VoiceFollower” in Internals Reference, Section “TrillSpanner” in
Internals Reference, Section “line-spanner-interface” in Internals Reference.

5.4.6 Visibility of objects

There are four main ways in which the visibility of layout objects can be controlled: their stencil
can be removed, they can be made transparent, they can be colored white, or their break-
visibility property can be overridden. The first three apply to all layout objects; the last to
just a few — the breakable objects. The Learning Manual introduces these four techniques, see
Section “Visibility and color of objects” in Learning Manual.

There are also a few other techniques which are specific to certain layout objects. These are
covered under Special considerations.

Chapter 5: Changing defaults 401

Removing the stencil

Every layout object has a stencil property. By default this is set to the specific function which
draws that object. If this property is overridden to #f no function will be called and the object
will not be drawn. The default action can be recovered with \revert.

al a

\override Score.BarLine #'stencil = ##f
a a

\revert Score.BarLine #'stencil

aaa

j—
N (o]

P

= = = = = = =
Making objects transparent

Every layout object has a transparent property which by default is set to #f. If set to #t the
object still occupies space but is made invisible.

a4 a
\once \override NoteHead #'transparent = #i#t
aa

o | | |

oJ

Painting objects white

Every layout object has a color property which by default is set to black. If this is overridden
to white the object will be indistinguishable from the white background. However, if the object
crosses other objects the color of the crossing points will be determined by the order in which
they are drawn, and this may leave a ghostly image of the white object, as shown here:

\override Staff.Clef #'color = #white
al

—o—

This may be avoided by changing the order of printing the objects. All layout objects have
a layer property which should be set to an integer. Objects with the lowest value of layer
are drawn first, then objects with progressively higher values are drawn, so objects with higher
values overwrite objects with lower values. By default most objects are assigned a layer value
of 1, although a few objects, including StaffSymbol and BarLine, are assigned a value of 0.
The order of printing objects with the same value of layer is indeterminate.

In the example above the white clef, with a default 1ayer value of 1, is drawn after the staff
lines (default layer value 0), so overwriting them. To change this, the Clef object must be
given in a lower value of layer, say -1, so that it is drawn earlier:

\override Staff.Clef #'color = #white
\override Staff.Clef #'layer = #-1
al

Chapter 5: Changing defaults 402

—€o

Using break-visibility

Most layout objects are printed only once, but some like bar lines, clefs, time signatures and key
signatures, may need to be printed twice when a line break occurs — once at the end of the line
and again at the start of the next line. Such objects are called breakable, and have a property,
the break-visibility property to control their visibility at the three positions in which they
may appear — at the start of a line, within a line if they are changed, and at the end of a line if
a change takes place there.

For example, the time signature by default will be printed at the start of the first line, but
nowhere else unless it changes, when it will be printed at the point at which the change occurs.
If this change occurs at the end of a line the new time signature will be printed at the start of
the next line and a cautionary time signature will be printed at the end of the previous line as
well.

This behaviour is controlled by the break-visibility property, which is explained in Section
“Visibility and color of objects” in Learning Manual. This property takes a vector of three
booleans which, in order, determine whether the object is printed at the end of, within the body
of, or at the beginning of a line. Or to be more precise, before a line break, where there is no
line break, or after a line break.

Alternatively, these eight combinations may be specified by pre-defined functions, defined in
‘scm/output-1lib.scm’, where the last three columns indicate whether the layout objects will
be visible in the positions shown at the head of the columns:

Function Vector BeforeAt After
no
form form break break break
all-visible "#(#t #t #t) yes yes yes
begin-of-line-visible "#(#f #f #t) 1no no yes
center-visible "#(#f #t #f) no yes no
end-of-line-visible "#(#t #f #£f) yes no no
begin-of-line-invisible '#(#t #t #f) yes yes no
center-invisible "#(#t #f #t) yes no yes
end-of-line-invisible "#(#f #t #t) no yes yes
all-invisible '#(#f #f #f) 1no no no

The default settings of break-visibility depend on the layout object. The following table
shows all the layout objects of interest which are affected by break-visibility and the default
setting of this property:

Layout object Usual context Default setting

BarLine Score calculated

BarNumber Score begin-of-line-visible
BreathingSign Voice begin-of-line-invisible
Clef Staff begin-of-line-visible
Custos Staff end-of-line-visible
DoublePercentRepeat Voice begin-of-line-invisible
KeySignature Staff begin-of-line-visible
OctavateEight Staff begin-of-line-visible

RehearsalMark Score end-of-line-invisible

Chapter 5: Changing defaults 403

TimeSignature Staff all-visible

f4
f4

The example below shows the use of the vector form to control the visibility of barlines:

gab
gab

% Remove bar line at the end of the current line
\once \override Score.BarLine #'break-visibility = #'#(#f #t #t)
\break

f4
f4

gab
gab

Although all three components of the vector used to override break-visibility must be

present, not all of them are effective with every layout object, and some combinations may even
give errors. The following limitations apply:

Bar lines cannot be printed at start of line.

A bar number cannot be printed at the start of the first line unless it is set to be different
from 1.

Clef — see below

Double percent repeats are either all printed or all suppressed. Use begin-of line-invisible
to print and all-invisible to suppress.

Key signature — see below

OctavateFight — see below

Special considerations

Visibility following explicit changes

The break-visibility property controls the visibility of key signatures and changes of clef

only at the start of lines, i.e. after a break. It has no effect on the visibility of the key signature
or clef following an explicit key change or an explicit clef change within or at the end of a line.
In the following example the key signature following the explicit change to B-flat major is still
visible, even though all-invisible is set.

\key g \major

4

gab

% Try to remove all key signatures
\override Staff.KeySignature #'break-visibility = #all-invisible
\key bes \major

f4

gab

\break

f4
f4

gab
gab

Chapter 5: Changing defaults 404

() ﬁ L

) 4

GRS e
"9
égt::

o

il un oy

:

The visibility of such explicit key signature and clef changes is controlled by the
explicitKeySignatureVisibility and explicitClefVisibility properties. These are the
equivalent of the break-visibility property and both take a vector of three booleans or the
predefined functions listed above, exactly like break-visibility. Both are properties of the
Staff context, not the layout objects themselves, and so they are set using the \set command.
Both are set by default to all-visible. These properties control only the visibility of key
signatures and clefs resulting from explicit changes and do not affect key signatures and clefs
at the beginning of lines; break-visibility must still be overridden in the appropriate object
to remove these.

\key g \major

f4 gab

\set Staff.explicitKeySignatureVisibility = #all-invisible
\override Staff.KeySignature #'break-visibility = #all-invisible
\key bes \major

f4 g a b \break

f4 gab

f4 gab

0-4

) 4

il un oy

'
v
thy

Visibility of cautionary accidentals

To remove the cautionary accidentals printed at an explicit key change, set the Staff context
property printKeyCancellation to #f:

\key g \major

f4d gab

\set Staff.explicitKeySignatureVisibility = #all-invisible

\set Staff.printKeyCancellation = ##f

\override Staff.KeySignature #'break-visibility = #all-invisible
\key bes \major

f4 g a b \break

f4d gab

f4 gab

() 4 \ R

v‘."'? jjh'-l

Chapter 5: Changing defaults 405

3.0 | C

)’ 4 [| [

Gae ot liaotr

With these overrides only the accidentals before the notes remain to indicate the change of
key.
Automatic bars

As a special case, the printing of bar lines can also be turned off by setting the automaticBars
property in the Score context. If set to #f, bar lines will not be printed automatically; they
must be explicitly created with a \bar command. Unlike the \cadenzaOn predefined command,
measures are still counted. Bar generation will resume according to that count if this property
is later set to #t. When set to #f, line breaks can occur only at explicit \bar commands.

Octavated clefs

The small octavation symbol on octavated clefs is produced by the OctavateEight layout
object. Its visibility is controlled independently from that of the Clef object, so it is necessary
to apply any required break-visibility overrides to both the Clef and the OctavateEight
layout objects to fully suppress such clef symbols at the start of each line.

For explicit clef changes, the explicitClefVisibility property controls both the clef sym-
bol and any octavation symbol associated with it.

See also

Learning Manual: Section “Visibility and color of objects” in Learning Manual

5.4.7 Line styles

Some performance indications, e.g., rallentando and accelerando and trills are written as text
and are extended over many measures with lines, sometimes dotted or wavy.

These all use the same routines as the glissando for drawing the texts and the lines, and
tuning their behavior is therefore also done in the same way. It is done with a spanner, and
the routine responsible for drawing the spanners is 1y:1line-interface: :print. This routine
determines the exact location of the two span points and draws a line between them, in the style
requested.

Here is an example showing the different line styles available, and how to tune them.

d2 \glissando d4'2

\once \override Glissando #'style = #'dashed-line
d,2 \glissando d'2

\override Glissando #'style = #'dotted-line

d,2 \glissando d'2
\override Glissando #'style
d,2 \glissando d'2
\override Glissando #'style = #'trill
d,2 \glissando d'2

#'zigzag

2 - 2 2 2
o T sl— LT :JJ“‘\‘_ ’_H b
A ¢ 2 = = = =

{fes—C

N3V, !

oJ

The locations of the end-points of the spanner are computed on-the-fly for every graphic
object, but it is possible to override these:

e2 \glissando f
\once \override Glissando #'(bound-details right Y) = #-2
e2 \glissando f

Chapter 5: Changing defaults 406

TTT®
N
\

P

The value for Y is set to -2 for the right end point. The left side may be similarly adjusted
by specifying left instead of right.

If Y is not set, the value is computed from the vertical position of the left and right attachment
points of the spanner.

Other adjustments of spanners are possible, for details, see Section 5.4.5 [Spanners], page 396.

5.4.8 Rotating objects

Both layout objects and elements of markup text can be rotated by any angle about any point,
but the method of doing so differs.

Rotating layout objects

All layout objects which support the grob-interface can be rotated by setting their rotation
property. This takes a list of three items: the angle of rotation counter-clockwise, and the x and
y coordinates of the point relative to the object’s reference point about which the rotation is to
be performed. The angle of rotation is specified in degrees and the coordinates in staff-spaces.

The angle of rotation and the coordinates of the rotation point must be determined by trial
and error.

There are only a few situations where the rotation of layout objects is useful; the following
example shows one situation where they may be:
ga\< e' d' f\!
\override Hairpin #'rotation = #'(20 -1 0)
g,,4\< e' d' f\!

0 e

ot I I I !

Y] - _‘/
v v
_

Rotating markup

All markup text can be rotated to lie at any angle by prefixing it with the \rotate command.
The command takes two arguments: the angle of rotation in degrees counter-clockwise and the
text to be rotated. The extents of the text are not rotated: they take their values from the
extremes of the x and y coordinates of the rotated text. In the following example the outside-
staff-priority property for text is set to #f to disable the automatic collision avoidance,
which would push some of the text too high.

\override TextScript #'outside-staff-priority = ##f
g4~ \markup { \rotate #30 "a G" }

b~ \markup { \rotate #30 "a B" }

des”\markup { \rotate #30 "a D-Flat" }

fis"\markup { \rotate #30 "an F-Sharp" }

9
eyp?®
SRR

[> T D

"4

7\ r @)

[[av Y I Y

Sa———r
v

Chapter 5: Changing defaults 407

5.5 Advanced tweaks

This section discusses various approaches to fine tuning the appearance of the printed score.

See also

Learning Manual: Section “Tweaking output” in Learning Manual, Section “Other sources
of information” in Learning Manual.

Notation Reference: Section 5.2 [Explaining the Internals Reference|, page 383, Section 5.3
[Modifying properties|, page 386, Chapter 6 [Interfaces for programmers|, page 414.

Installed Files: ‘scm/define-grobs.scm’.
Snippets: Section “Tweaks and overrides” in Snippets.

Internals Reference: Section “All layout objects” in Internals Reference.

5.5.1 Aligning objects

Graphical objects which support the self-alignment-interface and/or the side-position-
interface can be aligned to a previously placed object in a variety of ways. For a list of these
objects, see Section “self-alignment-interface” in Internals Reference and Section “side-position-
interface” in Internals Reference.

All graphical objects have a reference point, a horizontal extent and a vertical extent. The
horizontal extent is a pair of numbers giving the displacements from the reference point of the left
and right edges, displacements to the left being negative. The vertical extent is a pair of numbers
giving the displacement from the reference point to the bottom and top edges, displacements
down being negative.

An object’s position on a staff is given by the values of the X-offset and Y-offset properties.
The value of X-offset gives the displacement from the x coordinate of the reference point of
the parent object, and the value of Y-offset gives the displacement from the center line of the
staff. The values of X-offset and Y-offset may be set directly or may be set to be calculated
by procedures in order to achieve alignment with the parent object in several ways.

Note: Many objects have special positioning considerations which cause any setting of
X-offset or Y-offset to be ignored or modified, even though the object supports the
self-alignment-interface.

For example, an accidental can be repositioned vertically by setting Y-offset but any changes
to X-offset have no effect.

Rehearsal marks may be aligned with breakable objects such as bar lines, clef symbols, time
signature symbols and key signatures. There are special properties to be found in the break-
aligned-interface for positioning rehearsal marks on such objects.

Setting X-offset and Y-offset directly

Numerical values may be given to the X-offset and Y-offset properties of many objects. The
following example shows three notes with the default fingering position and the positions with
X-offset and Y-offset modified.

a-3

a

-\tweak #'X-offset #0

-\tweak #'Y-offset #0

-3

a

-\tweak #'X-offset #-1

Chapter 5: Changing defaults 408

-\tweak #'Y-offset #1

-3
0) % L
4 —
J

Using the side-position-interface

An object which supports the side-position-interface can be placed next to its parent object
so that the specified edges of the two objects touch. The object may be placed above, below,
to the right or to the left of the parent. The parent cannot be specified; it is determined by
the order of elements in the input stream. Most objects have the associated note head as their
parent.

The values of the side-axis and direction properties determine where the object is to be
placed, as follows:

side-axis direction

property property Placement
0 -1 left

0 1 right

1 -1 below

1 1 above

When side-axis is 0, X-offset should be set to the procedure ly:side-position-
interface: :x-aligned-side. This procedure will return the correct value of X-offset to
place the object to the left or right side of the parent according to value of direction.

When side-axis is 1, Y-offset should be set to the procedure ly:side-position-
interface::y-aligned-side. This procedure will return the correct value of Y-offset to
place the object to the top or bottom of the parent according to value of direction.

Using the self-alignment-interface
Self-aligning objects horizontally

The horizontal alignment of an object which supports the self-alignment-interface is
controlled by the value of the self-alignment-X property, provided the object’s X-offset
property is set to ly:self-alignment-interface::x-aligned-on-self. self-alignment-X
may be given any real value, in units of half the total X extent of the object. Negative values
move the object to the right, positive to the left. A value of O centers the object on the reference
point of its parent, a value of -1 aligns the left edge of the object on the reference point of its
parent, and a value of 1 aligns the right edge of the object on the reference point of its parent.
The symbols LEFT, CENTER and RIGHT may be used instead of the values -1, 0, 1 respectively.

Normally the \override command would be used to modify the value of self-alignment-X,
but the \tweak command can be used to separately align several annotations on a single note:
a 1
-\tweak #'self-alignment-X #-1
“"left-aligned"

-\tweak #'self-alignment-X #O0
“"center-aligned"

-\tweak #'self-alignment-X #RIGHT
“"right-aligned"

Chapter 5: Changing defaults 409

-\tweak #'self-alignment-X #-2.5
“"aligned further to the right"

center-aligned

right-aligned .
g E1¢%eft-aligned aligned further to the right

-

Self-aligning objects vertically

Objects may be aligned vertically in an analogous way to aligning them horizontally if the
Y-offset property is set to ly:self-alignment-interface::y-aligned-on-self. However,
other mechanisms are often involved in vertical alignment: the value of Y-offset is just one
variable taken into account. This may make adjusting the value of some objects tricky. The
units are just half the vertical extent of the object, which is usually quite small, so quite large
numbers may be required. A value of -1 aligns the lower edge of the object with the reference
point of the parent object, a value of 0 aligns the center of the object with the reference point
of the parent, and a value of 1 aligns the top edge of the object with the reference point of the
parent. The symbols DOWN, CENTER, UP may be substituted for -1, 0, 1 respectively.

Self-aligning objects in both directions

By setting both X-offset and Y-offset, an object may be aligned in both directions simul-
taneously.

The following example shows how to adjust a fingering mark so that it nestles close to the
note head.

a

-\tweak #'self-alignment-X #0.5 ¥ move horizontally left

-\tweak #'Y-offset #ly:self-alignment-interface::y-aligned-on-self
-\tweak #'self-alignment-Y #-1 % move vertically up

-3 % third finger

171

Using the break-alignable-interface

Rehearsal marks and bar numbers may be aligned with notation objects other than bar lines.
These objects include ambitus, breathing-sign, clef, custos, staff-bar, left-edge, key-
cancellation, key-signature, and time-signature.

By default, rehearsal marks and bar numbers will be horizontally centered above the object:

el

% the RehearsalMark will be centered above the Clef

\override Score.RehearsalMark #'break-align-symbols = #'(clef)

\key a \major

\clef treble

\mark ""

e

% the RehearsalMark will be centered above the TimeSignature

\override Score.RehearsalMark #'break-align-symbols = #'(time-signature)
\key a \major

Chapter 5: Changing defaults 410

\clef treble

\time 3/4
\mark nn
e2.
l
0 '} wg !
)" 4 V) o LLTT o LLTT
6} ‘5 6 L ™ML
] i i
ANV P\ Py =
QJ -y U -y

A list of possible target alignment objects may be specified. If some of the objects are invisible
at that point due to the setting of break-visibility or the explicit visibility settings for keys
and clefs, the rehearsal mark or bar number is aligned to the first object in the list which is
visible. If no objects in the list are visible the object is aligned to the bar line. If the bar line is
invisible the object is aligned to the place where the bar line would be.

el

% the RehearsalMark will be centered above the Key Signature

\override Score.RehearsalMark #'break-align-symbols = #'(key-signature clef)
\key a \major

\clef treble

\mark ""

e

% the RehearsalMark will be centered above the Clef

\set Staff.explicitKeySignatureVisibility = #all-invisible

\override Score.RehearsalMark #'break-align-symbols = #'(key-signature clef)
\key a \minor

\clef bass
\mark nn
e,
¢ d
) R -
K—F— 4
[[an Y W] [(a2 T Z H'h-l ©
ANV P\ o> |
U -y U -y

The alignment of the rehearsal mark relative to the notation object can be changed, as shown
in the following example. In a score with multiple staves, this setting should be done for all the
staves.

% The RehearsalMark will be centered above the KeySignature

\override Score.RehearsalMark #'break-align-symbols = #'(key-signature)
\key a \major

\clef treble

\time 4/4

\mark ""

el

% The RehearsalMark will be aligned with the left edge of the KeySignature
\once \override Score.KeySignature #'break-align-anchor-alignment = #LEFT
\mark ""

\key a \major

e

% The RehearsalMark will be aligned with the right edge of the KeySignature
\once \override Score.KeySignature #'break-align-anchor-alignment = #RIGHT

Chapter 5: Changing defaults 411

\key a \major

\mark nn
e
! ! {

) & 4 4 4 y 4

)Y AR 1 o LT o LT

/\ L r £ L L

[(o Y L. WV bl b

ANV O O O

U © © ©

The rehearsal mark can also be offset to the right or left of the left edge by an arbitrary
amount. The units are staff-spaces:

% The RehearsalMark will be aligned with the left edge of the KeySignature
% and then shifted right by 3.5 staff-spaces

\override Score.RehearsalMark #'break-align-symbols = #'(key-signature)
\once \override Score.KeySignature #'break-align-anchor = #3.5

\key a \major

\mark ""

e

% The RehearsalMark will be aligned with the left edge of the KeySignature
% and then shifted left by 2 staff-spaces

\once \override Score.KeySignature #'break-align-anchor = #-2

\key a \major

\mark nn
e
l
Db
5% — o

5.5.2 Vertical grouping of grobs

The VerticalAlignment and Vertical AxisGroup grobs work together. Vertical AxisGroup groups
together different grobs like Staff, Lyrics, etc. VerticalAlignment then vertically aligns the differ-
ent grobs grouped together by Vertical AxisGroup. There is usually only one VerticalAlignment
per score but every Staff, Lyrics, etc. has its own Vertical AxisGroup.

5.5.3 Modifying stencils

All layout objects have a stencil property which is part of the grob-interface. By default,
this property is usually set to a function specific to the object that is tailor-made to render the
symbol which represents it in the output. For example, the standard setting for the stencil
property of the MultiMeasureRest object is ly:multi-measure-rest: :print.

The standard symbol for any object can be replaced by modifying the stencil property to
reference a different, specially-written, procedure. This requires a high level of knowledge of
the internal workings of LilyPond, but there is an easier way which can often produce adequate
results.

This is to set the stencil property to the procedure which prints text — ly:text-
interface::print — and to add a text property to the object which is set to contain the
markup text which produces the required symbol. Due to the flexibility of markup, much can
be achieved — see in particular [Graphic notation inside markup], page 174.

The following example demonstrates this by changing the note head symbol to a cross within
a circle.

Chapter 5: Changing defaults 412

Xin0 = {
\once \override NoteHead #'stencil = #ly:text-interface::print
\once \override NoteHead #'text = \markup {
\combine
\halign #-0.7 \draw-circle #0.85 #0.2 ##f
\musicglyph #"noteheads.s2cross"
}
}
\relative c'' {
a a \Xin0 a a

}

0 |

% o

oJ

Any of the glyphs in the feta Font can be supplied to the \musicglyph markup command —
see Section B.6 [The Feta font], page 446.

See also

Notation Reference: [Graphic notation inside markup|, page 174, Section 1.8.2 [Formatting
text], page 167, Section B.8 [Text markup commands], page 463, Section B.6 [The Feta font],
page 446.

5.5.4 Modifying shapes

Modifying ties and slurs

Ties, slurs and phrasing slurs are drawn as third-order Bézier curves. If the shape of the tie or
slur which is calculated automatically is not optimum, the shape may be modified manually by
explicitly specifying the four control points required to define a third-order Bézier curve.

Third-order or cubic Bézier curves are defined by four control points. The first and fourth
control points are precisely the starting and ending points of the curve. The intermediate two
control points define the shape. Animations showing how the curve is drawn can be found on
the web, but the following description may be helpful. The curve starts from the first control
point heading directly towards the second, gradually bending over to head towards the third
and continuing to bend over to head towards the fourth, arriving there travelling directly from
the third control point. The curve is entirely contained in the quadrilateral defined by the four
control points.

Here is an example of a case where the tie is not optimum, and where \tieDown would not
help.
<<
{el " e}
\\
{rd<gc,><gc,><gec,>}
>>

Chapter 5: Changing defaults 413

One way of improving this tie is to manually modify its control points, as follows.

The coordinates of the Bézier control points are specified in units of staff-spaces. The X co-
ordinate is relative to the reference point of the note to which the tie or slur is attached, and
the Y coordinate is relative to the staff center line. The coordinates are entered as a list of four
pairs of decimal numbers (reals). One approach is to estimate the coordinates of the two end
points, and then guess the two intermediate points. The optimum values are then found by trial
and error.

It is useful to remember that a symmetric curve requires symmetric control points, and that
Bézier curves have the useful property that transformations of the curve such as translation,
rotation and scaling can be achieved by applying the same transformation to the curve’s control
points.

For the example above the following override gives a satisfactory tie:
<<

\once \override Tie
#'control-points = #'((1 . -1) (3 . 0.6) (12.5 . 0.6) (14.5 . -1))
{el " el }

\\

{rd<gc,><gc,><gc,>d }
>>

()

)" 4

/\ r £)

GRS

Known issues and warnings

It is not possible to modify shapes of ties or slurs by changing the control-points property if
there are more than one at the same musical moment, not even by using the \tweak command.

Chapter 6: Interfaces for programmers 414

6 Interfaces for programmers

Advanced tweaks may be performed by using Scheme. If you are not familiar with Scheme, you
may wish to read our Section “Scheme tutorial” in Learning Manual.

6.1 Music functions

This section discusses how to create music functions within LilyPond.

6.1.1 Overview of music functions

Making a function which substitutes a variable into LilyPond code is easy. The general form of
these functions is

function =
#(define-music-function (parser location varl var2...vari...)
(varl-type? var2-type?...vari-type?...)
#{
...music...

#1)
where
vari ith variable
vari-type? type of ith variable
...muslic... normal LilyPond input, using variables as #$vari1, etc.

There following input types may be used as variables in a music function. This list is not
exhaustive; see other documentation specifically about Scheme for more variable types.

Input type vari-type? notation
Integer integer?

Float (decimal number) number?

Text string string?

Markup markup?

Music expression ly:music?

A pair of variables pair?

The parser and location arguments are mandatory, and are used in some advanced situ-
ations. The parser argument is used to gain access to the value of another LilyPond variable.
The location argument is used to set the ‘origin’ of the music expression that is built by the
music function, so that in case of a syntax error LilyPond can tell the user an appropriate place
to look in the input file.

6.1.2 Simple substitution functions
Here is a simple example,

padText = #(define-music-function (parser location padding) (number?)
#{
\once \override TextScript #'padding = #$padding
#1)

\relative c''' {
c4""piu mosso" b a b
\padText #1.8
c4”"piu mosso" d e £
\padText #2.6

Chapter 6: Interfaces for programmers

c4”"piu mosso" fis a g

}

piu mosso

P

piu mosso

o £ o
5 i i P -

piu mosso

::f.q,]o. 2]

e
e

-
N (o]

P

Music expressions may be substituted as well,

custosNote = #(define-music-function (parser location note)
(ly:music?)
#{

\once \override Voice.NoteHead #'stencil =
#ly:text-interface: :print

\once \override Voice.NoteHead #'text =
\markup \musicglyph #"custodes.mensural.u0"

\once \override Voice.Stem #'stencil = ##f

$note

#1)

{ c' d'" e' £' \custosNote g' }

0
"4
7\ r @)

[(v Y W "

Tt

Multiple variables may be used,

tempoMark = #(define-music-function (parser location padding marktext)
(number? string?)
#{

\once \override Score . RehearsalMark #'padding = $padding

\once \override Score . RehearsalMark #'extra-spacing-width = #'(+inf.

\mark \markup { \bold $marktext }

#31)
\relative c'' {
c2 e
\tempoMark #3.0 #"Allegro"
g c
b
Allegro
b=
., FE
7

-
N
\

P>

0 .

415

-inf.0)

Chapter 6: Interfaces for programmers 416

6.1.3 Paired substitution functions

Some \override commands require a pair of numbers (called a cons cell in Scheme). To pass
these numbers into a function, either use a pair? variable, or insert the cons into the music
function.

manualBeam =
#(define-music-function (parser location beg-end)
(pair?)
#{
\once \override Beam #'positions = #$beg-end
#31)

\relative {
\manualBeam #'(3 . 6) c8 d e f
}
or
manualBeam =
#(define-music-function (parser location beg end)
(number? number?)
#{
\once \override Beam #'positions = #(cons $beg $end)

#1)

\relative {
\manualBeam #3 #6 c8 d e f
}

o~

o) ~
Y

A

({a W]

o oo * "

6.1.4 Mathematics in functions

Music functions can involve Scheme programming in addition to simple substitution,
Al1tOn = #(define-music-function (parser location mag) (number?)
#{ \override Stem #'length = #$(* 7.0 mag)
\override NoteHead #'font-size =
#$ (inexact->exact (* (/ 6.0 (log 2.0)) (log mag))) #})

A1t0ff = {
\revert Stem #'length
\revert NoteHead #'font-size

}

{ c'2 \A1tOn #0.5 c'4 ¢'
\AltOn #1.5 c' c' \AltOff c'2 }

r)
\ 7

s 17 &&=

P

This example may be rewritten to pass in music expressions,

Chapter 6: Interfaces for programmers 417

withAlt = #(define-music-function (parser location mag music) (number? ly:music?)
#{ \override Stem #'length = #$(x 7.0 mag)
\override NoteHead #'font-size =
#$(inexact->exact (x (/ 6.0 (log 2.0)) (log mag)))
$music
\revert Stem #'length
\revert NoteHead #'font-size #})

{ ¢c'2 \withAlt #0.5 {c'4 c'}
\withAlt #1.5 {c' ¢'} c'2 }

Y 4\ r)
\ W7

Y ¢ < 005

6.1.5 Void functions

A music function must return a music expression, but sometimes we may want to have a function
which does not involve music (such as turning off Point and Click). To do this, we return a void
music expression.

That is why the form that is returned is the (make-music ...). With the 'void property
set to #t, the parser is told to actually disregard this returned music expression. Thus the
important part of the void music function is the processing done by the function, not the music
expression that is returned.
noPointAndClick =
#(define-music-function (parser location) ()

(ly:set-option 'point-and-click #f)

(make-music 'SequentialMusic 'void #t))

\noPointAndClick % disable point and click

6.1.6 Functions without arguments

In most cases a function without arguments should be written with an variable,
dolce = \markup{ \italic \bold dolce }
However, in rare cases it may be useful to create a music function without arguments,
displayBarNum =
#(define-music-function (parser location) ()
(if (eq? #t (ly:get-option 'display-bar-numbers))
#{ \once \override Score.BarNumber #'break-visibility = ##f #}
#{#}))
To actually display bar numbers where this function is called, invoke 1ilypond with
lilypond -d display-bar-numbers FILENAME.ly

6.1.7 Overview of available music functions
The following commands are music functions

acciaccatura - music (music)
Create an acciaccatura from the following music expression

addChordShape - key-symbol (symbol) tuning (pair) shape-definition (unknown)
Add chord shape shape-definition to the chord-shape-table hash with the key (cons
key-symbol tuning).

Chapter 6: Interfaces for programmers 418

addInstrumentDefinition - name (string) Ist (list)
Create instrument name with properties list.

addQuote - name (string) music (music)
Define music as a quotable music expression named name

afterGrace - main (music) grace (music)
Create grace note(s) after a main music expression.

allowPageTurn
Allow a page turn. May be used at toplevel (ie between scores or markups), or
inside a score.

applyContext - proc (procedure)
Modify context properties with Scheme procedure proc.

applyMusic - func (procedure) music (music)
Apply procedure func to music.

applyOutput - ctx (symbol) proc (procedure)

Apply function proc to every layout object in context ctx
appoggiatura - music (music)

Create an appoggiatura from music

assertBeamQuant - | (pair) r (pair)
Testing function: check whether the beam quants I and r are correct

assertBeamSlope - comp (procedure)

Testing function: check whether the slope of the beam is the same as comp
autochange - music (music)

Make voices that switch between staves automatically

balloonGrobText - grob-name (symbol) offset (pair of numbers) text (markup)
Attach text to grob-name at offset offset (use like \once)

balloonText - offset (pair of numbers) text (markup)
Attach text at offset (use like \tweak)
bar - type (string)
Insert a bar line of type type

barNumberCheck - n (integer)
Print a warning if the current bar number is not n.

bendAfter - delta (unknown)
Create a fall or doit of pitch interval delta.

breathe Insert a breath mark.

clef - type (string)
Set the current clef to type.
cueDuring - what (string) dir (direction) main-music (music)
Insert contents of quote what corresponding to main-music, in a CueVoice oriented
by dir.
displayLilyMusic - music (music)
Display the LilyPond input representation of music to the console.
displayMusic - music (music)
Display the internal representation of music to the console.

Chapter 6: Interfaces for programmers 419

endSpanners - music (music)
Terminate the next spanner prematurely after exactly one note without the need of
a specific end spanner.

featherDurations - factor (moment) argument (music)
Adjust durations of music in argument by rational factor.

grace - music (music)
Insert music as grace notes.

includePagelLayoutFile
Include the file <basename>-page-layout.ly. Deprecated as part of two-pass spacing.

instrumentSwitch - name (string)
Switch instrument to name, which must be predefined with
\addInstrumentDefinition.

keepWithTag - tag (symbol) music (music)
Include only elements of music that are tagged with tag.

killCues - music (music)
Remove cue notes from music.

label - label (symbol)
Create label as a bookmarking label

makeClusters - arg (music)
Display chords in arg as clusters

musicMap - proc (procedure) mus (music)
(undocumented; fixme)

noPageBreak
Forbid a page break. May be used at toplevel (ie between scores or markups), or
inside a score.

noPageTurn
Forbid a page turn. May be used at toplevel (ie between scores or markups), or
inside a score.

octaveCheck - pitch-note (music)
octave check

ottava - octave (number)
set the octavation

overrideProperty - name (string) property (symbol) value (any type)
Set property to value in all grobs named name. The name argument is a string of
the form "Context.GrobName" or "GrobName"

pageBreak
Force a page break. May be used at toplevel (ie between scores or markups), or
inside a score.

pageTurn Force a page turn between two scores or top-level markups.

parallelMusic - voice-ids (list) music (music)
Define parallel music sequences, separated by ’|” (bar check signs), and assign them
to the identifiers provided in voice-ids.

voice-ids: a list of music identifiers (symbols containing only letters)
music: a music sequence, containing BarChecks as limiting expressions.

Example:

Chapter 6: Interfaces for programmers 420

\parallelMusic #'(A B C) {
cclddlee]l
ddl|l ee | £ff|

}
<==>
A={cclddl}
B={ddleel}
C={eel| £f£f]}

parenthesize - arg (music)
Tag arg to be parenthesized.

partcombine - partl (music) part2 (music)
(undocumented; fixme)

pitchedTrill - main-note (music) secondary-note (music)
(undocumented; fixme)

pointAndClickOff
(undocumented; fixme)

pointAndClickOn
(undocumented; fixme)

quoteDuring - what (string) main-music (music)
(undocumented; fixme)

removeWithTag - tag (symbol) music (music)
Remove elements of music that are tagged with tag.

resetRelativeOctave - reference-note (music)
Set the octave inside a \relative section.

rightHandFinger - finger (number or string)
Apply finger as a fingering indication.

scaleDurations - fraction (pair of numbers) music (music)
Multiply the duration of events in music by fraction.

scoreTweak - name (string)
Include the score tweak, if exists.

shiftDurations - dur (integer) dots (integer) arg (music)
Scale arg up by a factor of 2~dur*(2-(1/2)"dots).

spacingTweaks - parameters (list)
Set the system stretch, by reading the ’system-stretch property of the ‘parameters’
assoc list.

storePredefinedDiagram - chord (music) tuning (pair) diagram-definition (unknown)
Add predefined fret diagram defined by diagram-definition for the chord pitches
chord and the stringTuning tuning.

tag - tag (symbol) arg (music)
Add tag to the tags property of arg.

tocItem - text (markup)
Add a line to the table of content, using the tocItemMarkup paper variable markup

transposedCueDuring - what (string) dir (direction) pitch-note (music) main-music (music)
Insert notes from the part what into a voice called cue, using the transposition
defined by pitch-note. This happens simultaneously with main-music, which is

Chapter 6: Interfaces for programmers 421

usually a rest. The argument dir determines whether the cue notes should be
notated as a first or second voice.
transposition - pitch-note (music)
Set instrument transposition
tweak - sym (symbol) val (any type) arg (music)
Add sym . val to the tweaks property of arg.
unfoldRepeats - music (music)
(undocumented; fixme)
withMusicProperty - sym (symbol) val (any type) music (music)
Set sym to val in music.

6.2 Programmer interfaces

This section contains information about mixing LilyPond and Scheme.

6.2.1 Input variables and Scheme
The input format supports the notion of variables: in the following example, a music expression
is assigned to a variable with the name traLaLa.
tralala = { c'4 d'4 }

There is also a form of scoping: in the following example, the \layout block also contains a
traLala variable, which is independent of the outer \traLaLa.
tralala = { c'4 d'4 }
\layout { tralala = 1.0 }

In effect, each input file is a scope, and all \header, \midi, and \layout blocks are scopes
nested inside that toplevel scope.

Both variables and scoping are implemented in the GUILE module system. An anonymous
Scheme module is attached to each scope. An assignment of the form
tralala = { c'4 d'4 }
is internally converted to a Scheme definition
(define tralala Scheme value of ‘... 7)

This means that input variables and Scheme variables may be freely mixed. In the following

example, a music fragment is stored in the variable traLalLa, and duplicated using Scheme. The
result is imported in a \score block by means of a second variable twice:

tralala = { ¢'4 d'4 }

%% dummy action to deal with parser lookahead
#(display "this needs to be here, sorry!")

#(define newlLa (map ly:music-deep-copy
(list tralala tralLala)))

#(define twice
(make-sequential-music newla))

{ \twice }

N (o

G e
-

Chapter 6: Interfaces for programmers 422

In this example, the assignment happens after parser has verified that nothing interesting
happens after tralala = { ... }. Without the dummy statement in the above example, the
newLa definition is executed before traLala is defined, leading to a syntax error.

The above example shows how to ‘export’ music expressions from the input to the Scheme in-
terpreter. The opposite is also possible. By wrapping a Scheme value in the function 1y:export,
a Scheme value is interpreted as if it were entered in LilyPond syntax. Instead of defining \twice,
the example above could also have been written as

{ #(1ly:export (make-sequential-music (list newLa))) }

Scheme code is evaluated as soon as the parser encounters it. To define some Scheme code
in a macro (to be called later), use Section 6.1.5 [Void functions], page 417, or

#(define (nopc)
(ly:set-option 'point-and-click #f))

(nopc)
{c'4}

Known issues and warnings

Mixing Scheme and LilyPond variables is not possible with the —-safe option.

6.2.2 Internal music representation

When a music expression is parsed, it is converted into a set of Scheme music objects. The
defining property of a music object is that it takes up time. Time is a rational number that
measures the length of a piece of music in whole notes.

A music object has three kinds of types:

e music name: Each music expression has a name. For example, a note leads to a Section
“NoteEvent” in Internals Reference, and \simultaneous leads to a Section “Simultaneous-
Music” in Internals Reference. A list of all expressions available is in the Internals Reference
manual, under Section “Music expressions” in Internals Reference.

e ‘type’ or interface: Each music name has several ‘types’ or interfaces, for example, a note is
an event, but it is also a note-event, a rhythmic-event, and amelodic-event. All classes
of music are listed in the Internals Reference, under Section “Music classes” in Internals
Reference.

e C++ object: Each music object is represented by an object of the C++ class Music.

The actual information of a music expression is stored in properties. For example, a Section
“NoteEvent” in Internals Reference has pitch and duration properties that store the pitch and
duration of that note. A list of all properties available is in the internals manual, under Section
“Music properties” in Internals Reference.

A compound music expression is a music object that contains other music objects in its
properties. A list of objects can be stored in the elements property of a music object, or a
single ‘child” music object in the element property. For example, Section “SequentialMusic”
in Internals Reference has its children in elements, and Section “GraceMusic” in Internals
Reference has its single argument in element. The body of a repeat is stored in the element
property of Section “RepeatedMusic” in Internals Reference, and the alternatives in elements.

6.3 Building complicated functions

This section explains how to gather the information necessary to create complicated music
functions.

Chapter 6: Interfaces for programmers 423

6.3.1 Displaying music expressions

When writing a music function it is often instructive to inspect how a music expression is stored
internally. This can be done with the music function \displayMusic

{
\displayMusic { c'4\f }
}
will display
(make-music
'SequentialMusic
'elements
(list (make-music
'EventChord
'elements
(1ist (make-music
'NoteEvent
'duration
(1y :make-duration 2 0 1 1)
'pitch
(ly:make-pitch 0 0 0))
(make-music
'AbsoluteDynamicEvent
'text
"£")))))

By default, LilyPond will print these messages to the console along with all the other mes-
sages. To split up these messages and save the results of \display{STUFF}, redirect the output
to a file.

lilypond file.ly >display.txt
With a bit of reformatting, the above information is easier to read,

(make-music 'SequentialMusic
'elements (list (make-music 'EventChord
'elements (list (make-music 'NoteEvent
'duration (ly:make-duration 2 0 1 1)
'pitch (ly:make-pitch 0 0 0))
(make-music 'AbsoluteDynamicEvent
'text "£")))))

A { ...} music sequence has the name SequentialMusic, and its inner expressions are
stored as a list in its 'elements property. A note is represented as an EventChord expres-
sion, containing a NoteEvent object (storing the duration and pitch properties) and any extra
information (in this case, an AbsoluteDynamicEvent with a "£" text property.

6.3.2 Music properties
The NoteEvent object is the first object of the 'elements property of someNote

someNote = c'
\displayMusic \someNote
===>
(make-music

'EventChord

'elements

(list (make-music

Chapter 6: Interfaces for programmers 424

'NoteEvent
'duration
(ly:make-duration 2 0 1 1)
'pitch
(ly:make-pitch 0 0 0))))
The display-scheme-music function is the function used by \displayMusic to display the
Scheme representation of a music expression.

#(display-scheme-music (first (ly:music-property someNote 'elements)))

(make-music
'NoteEvent
'duration
(1y :make-duration 2 0 1 1)
'pitch
(ly:make-pitch 0 0 0))
Then the note pitch is accessed through the 'pitch property of the NoteEvent object,

#(display-scheme-music
(ly:music-property (first (ly:music-property someNote 'elements))
'pitch))

(1y :make-pitch 0 0 0)
The note pitch can be changed by setting this 'pitch property,

#(set! (ly:music-property (first (ly:music-property somelNote 'elements))
'pitch)
(ly:make-pitch O 1 0)) ;; set the pitch to d'.
\displayLilyMusic \someNote

d !

6.3.3 Doubling a note with slurs (example)

Suppose we want to create a function which translates input like a into a(a). We begin by
examining the internal representation of the music we want to end up with.

\displayMusic{ a'(a') }

(make-music
'SequentialMusic
'elements
(list (make-music
'EventChord
'elements
(list (make-music
'NoteEvent
'duration
(ly:make-duration 2 0 1 1)
'pitch
(ly:make-pitch 0 5 0))
(make-music
'SlurEvent
'span-direction

-1)))

Chapter 6: Interfaces for programmers 425

(make-music
'EventChord
'elements
(1ist (make-music
'NoteEvent
'duration
(ly:make-duration 2 0 1 1)
'pitch
(ly:make-pitch 0 5 0))
(make-music
'SlurEvent
'span-direction
iDDDDD)
The bad news is that the SlurEvent expressions must be added ‘inside’ the note (or more
precisely, inside the EventChord expression).

Now we examine the input,

(make-music
'SequentialMusic
'elements
(1list (make-music
'EventChord
'elements
(list (make-music
'NoteEvent
'duration
(1y:make-duration 2 0 1 1)
'pitch
(1y:make-pitch 0 5 0))))))
So in our function, we need to clone this expression (so that we have two notes to build
the sequence), add SlurEvents to the 'elements property of each one, and finally make a
SequentialMusic with the two EventChords.

doubleSlur = #(define-music-function (parser location note) (ly:music?)
"Return: { note (note) }.
“note' is supposed to be an EventChord."
(let ((note2 (ly:music-deep-copy note)))
(set! (ly:music-property note 'elements)
(cons (make-music 'SlurEvent 'span-direction -1)
(ly:music-property note 'elements)))
(set! (ly:music-property note2 'elements)
(cons (make-music 'SlurEvent 'span-direction 1)
(ly :music-property note2 'elements)))
(make-music 'SequentialMusic 'elements (list note note2))))

6.3.4 Adding articulation to notes (example)

The easy way to add articulation to notes is to merge two music expressions into one context,
as explained in Section 5.1.2 [Creating contexts|, page 377. However, suppose that we want to
write a music function which does this.

A $variable inside the #{...#} notation is like using a regular \variable in classical
LilyPond notation. We know that

{ \music -. > %}

Chapter 6: Interfaces for programmers 426

will not work in LilyPond. We could avoid this problem by attaching the articulation to a fake
note,

{ << \music s1*0-.-> }

but for the sake of this example, we will learn how to do this in Scheme. We begin by examining
our input and desired output
% input
\displayMusic c4
===>
(make-music
'EventChord
'elements
(1ist (make-music
'NoteEvent
'duration
(ly:make-duration 2 0 1 1)
'pitch
(ly:make-pitch -1 0 0))))

% desired output
\displayMusic c4->

(make-music
'EventChord
'elements
(list (make-music
'NoteEvent
'duration
(1y:make-duration 2 0 1 1)
'pitch
(ly:make-pitch -1 0 0))
(make-music
'ArticulationEvent
'articulation-type
"marcato")))

We see that a note (c4) is represented as an EventChord expression, with a NoteEvent
expression in its elements list. To add a marcato articulation, an ArticulationEvent expression
must be added to the elements property of the EventChord expression.

To build this function, we begin with

(define (add-marcato event-chord)
"Add a marcato ArticulationEvent to the elements of “event-chord',
which is supposed to be an EventChord expression."
(let ((result-event-chord (ly:music-deep-copy event-chord)))
(set! (ly:music-property result-event-chord 'elements)
(cons (make-music 'ArticulationEvent
'articulation-type "marcato")
(ly:music-property result-event-chord 'elements)))
result-event-chord))

The first line is the way to define a function in Scheme: the function name is add-marcato,
and has one variable called event-chord. In Scheme, the type of variable is often clear from its
name. (this is good practice in other programming languages, too!)

Chapter 6: Interfaces for programmers 427

"Add a marcato..."

is a description of what the function does. This is not strictly necessary, but just like clear
variable names, it is good practice.

(let ((result-event-chord (ly:music-deep-copy event-chord)))

let is used to declare local variables. Here we use one local variable, named result-event-
chord, to which we give the value (1y:music-deep-copy event-chord). ly:music-deep-copy
is a function specific to LilyPond, like all functions prefixed by ly:. It is use to make a copy
of a music expression. Here we copy event-chord (the parameter of the function). Recall that
our purpose is to add a marcato to an EventChord expression. It is better to not modify the
EventChord which was given as an argument, because it may be used elsewhere.

Now we have a result-event-chord, which is a NoteEventChord expression and is a copy
of event-chord. We add the marcato to its elements list property.

(set! place new-value)

Here, what we want to set (the ‘place’) is the ‘elements’ property of result-event-chord
expression.

(ly:music-property result-event-chord 'elements)

ly:music-property is the function used to access music properties (the 'elements,
'duration, 'pitch, etc, that we see in the \displayMusic output above). The new value is
the former elements property, with an extra item: the ArticulationEvent expression, which
we copy from the \displayMusic output,

(cons (make-music 'ArticulationEvent
'articulation-type "marcato")
(ly:music-property result-event-chord 'elements))

cons is used to add an element to a list without modifying the original list. This is what we
want: the same list as before, plus the new ArticulationEvent expression. The order inside
the elements property is not important here.

Finally, once we have added the marcato articulation to its elements property, we can return
result-event-chord, hence the last line of the function.

Now we transform the add-marcato function into a music function,

addMarcato = #(define-music-function (parser location event-chord)
(ly:music?)
"Add a marcato ArticulationEvent to the elements of “event-chord',
which is supposed to be an EventChord expression."
(let ((result-event-chord (ly:music-deep-copy event-chord)))
(set! (ly:music-property result-event-chord 'elements)
(cons (make-music 'ArticulationEvent
'articulation-type "marcato")
(ly:music-property result-event-chord 'elements)))
result-event-chord))

We may verify that this music function works correctly,

\displayMusic \addMarcato c4

6.4 Markup programmer interface

Markups are implemented as special Scheme functions which produce a Stencil object given a
number of arguments.

Chapter 6: Interfaces for programmers 428

6.4.1 Markup construction in Scheme
The markup macro builds markup expressions in Scheme while providing a LilyPond-like syntax.
For example,
(markup #:column (#:line (#:bold #:italic "hello" #:raise 0.4 "world")
#:larger #:1line ("foo" "bar" "baz")))
is equivalent to:
\markup \column { \line { \bold \italic "hello" \raise #0.4 "world" }
\larger \line { foo bar baz } }

This example demonstrates the main translation rules between regular LilyPond markup syntax
and Scheme markup syntax.

LilyPond Scheme

\markup markupl (markup markupl)

\markup { markupl (markup markupl

markup2 ... } markup2 ...)

\command #: command

\variable variable

\center-column { ... } #:center-column (...
)

string "string"

#scheme-arg scheme-arg

The whole Scheme language is accessible inside the markup macro. For example, You may
use function calls inside markup in order to manipulate character strings. This is useful when
defining new markup commands (see Section 6.4.3 [New markup command definition|, page 429).

Known issues and warnings

The markup-list argument of commands such as #:1ine, #:center, and #:column cannot be a
variable or the result of a function call.
(markup #:line (function-that-returns-markups))

is invalid. One should use the make-line-markup, make-center-markup, or make-column-
markup functions instead,

(markup (make-line-markup (function-that-returns-markups)))

6.4.2 How markups work internally
In a markup like
\raise #0.5 "text example"

\raise is actually represented by the raise-markup function. The markup expression is stored
as

(list raise-markup 0.5 (list simple-markup "text example"))

When the markup is converted to printable objects (Stencils), the raise-markup function is
called as
(apply raise-markup
\layout object
list of property alists
0.5
the "text example" markup)
The raise-markup function first creates the stencil for the text example string, and then it
raises that Stencil by 0.5 staff space. This is a rather simple example; more complex examples
are in the rest of this section, and in ‘scm/def ine-markup-commands.scm’.

Chapter 6: Interfaces for programmers 429

6.4.3 New markup command definition
New markup commands can be defined with the define-markup-command Scheme macro.

(define-markup-command (command-name layout props argl arg2 ...)
(argl-type? arg2-type? ...)
..command body..)

The arguments are
argi ith command argument
argi-type? a type predicate for the ith argument
layout the ‘layout’ definition
props a list of alists, containing all active properties.

As a simple example, we show how to add a \smallcaps command, which selects a small
caps font. Normally we could select the small caps font,

\markup { \override #'(font-shape . caps) Text-in-caps }

This selects the caps font by setting the font-shape property to #'caps for interpreting Text-
in-caps.

To make the above available as \smallcaps command, we must define a function using
define-markup-command. The command should take a single argument of type markup. There-
fore the start of the definition should read

(define-markup-command (smallcaps layout props argument) (markup?)

What follows is the content of the command: we should interpret the argument as a markup,
ie.,
(interpret-markup layout ... argument)

This interpretation should add ' (font-shape . caps) to the active properties, so we substitute
the following for the ... in the above example:

(cons (1list '(font-shape . caps)) props)

The variable props is a list of alists, and we prepend to it by cons’ing a list with the extra
setting.

Suppose that we are typesetting a recitative in an opera and we would like to define a
command that will show character names in a custom manner. Names should be printed with
small caps and moved a bit to the left and top. We will define a \character command which
takes into account the necessary translation and uses the newly defined \smallcaps command:

#(define-markup-command (character layout props name) (string?)
"Print the character name in small caps, translated to the left and
top. Syntax: \\character #\"name\""

(interpret-markup layout props

(markup #:hspace O #:translate (cons -3 1) #:smallcaps name)))

There is one complication that needs explanation: texts above and below the staff are moved
vertically to be at a certain distance (the padding property) from the staff and the notes. To
make sure that this mechanism does not annihilate the vertical effect of our #:translate, we
add an empty string (#:hspace 0) before the translated text. Now the #:hspace 0 will be put
above the notes, and the name is moved in relation to that empty string. The net effect is that
the text is moved to the upper left.

The final result is as follows:

{

c¢''"\markup \character #"Cleopatra"

Chapter 6: Interfaces for programmers 430

e'"\markup \character #"Giulio Cesare"

}
CLEOPATRA G1ULIO CESARE
()
e i i |
g +++tee

We have used the caps font shape, but suppose that our font does not have a small-caps
variant. In that case we have to fake the small caps font by setting a string in upcase with the
first letter a little larger:

#(define-markup-command (smallcaps layout props str) (string?)
"Print the string argument in small caps."
(interpret-markup layout props
(make-line-markup
(map (lambda (s)
(if (= (string-length s) 0)
S
(markup #:large (string-upcase (substring s 0 1))
#:translate (cons -0.6 0)
#:tiny (string-upcase (substring s 1)))))
(string-split str #\Space)))))

The smallcaps command first splits its string argument into tokens separated by spaces
((string-split str #\Space)); for each token, a markup is built with the first letter made
large and upcased (#:1large (string-upcase (substring s 0 1))), and a second markup built
with the following letters made tiny and upcased (#:tiny (string-upcase (substring s 1))).
As LilyPond introduces a space between markups on a line, the second markup is translated to
the left (#:translate (cons -0.6 0) ...). Then, the markups built for each token are put in
a line by (make-line-markup ...). Finally, the resulting markup is passed to the interpret-
markup function, with the layout and props arguments.

Note: there is now an internal command \smallCaps which can be used to set text in small
caps. See Section B.8 [Text markup commands|, page 463, for details.

Known issues and warnings

Currently, the available combinations of arguments (after the standard layout and props argu-
ments) to a markup command defined with define-markup-command are limited as follows.

(no argument)

list

markup

markup markup

scm

scm markup

scm scm

sem scm markup
scm scm markup markup
scm markup markup
scm scm scm

In the above table, scm represents native Scheme data types like ‘number’ or ‘string’.

As an example, it is not possible to use a markup command foo with four arguments defined
as

Chapter 6: Interfaces for programmers 431

#(define-markup-command (foo layout props
numl strl num?2 str2)
(number? string? number? string?)
)
If you apply it as, say,
\markup \foo #1 #"bar" #2 #"baz"

lilypond complains that it cannot parse foo due to its unknown Scheme signature.

6.4.4 New markup list command definition

Markup list commands are defined with the define-markup-list-command Scheme macro,
which is similar to the def ine-markup-command macro described in Section 6.4.3 [New markup
command definition], page 429, except that where the latter returns a single stencil, the former
returns a list stencils.

In the following example, a \paragraph markup list command is defined, which returns a
list of justified lines, the first one being indented. The indent width is taken from the props
argument.

#(define-markup-list-command (paragraph layout props args) (markup-list?)
(let ((indent (chain-assoc-get 'par-indent props 2)))
(interpret-markup-list layout props
(make-justified-lines-markup-list (cons (make-hspace-markup indent)

args)))))

Besides the usual layout and props arguments, the paragraph markup list command takes
a markup list argument, named args. The predicate for markup lists is markup-1ist?.

First, the function gets the indent width, a property here named par-indent, from the prop-
erty list props If the property is not found, the default value is 2. Then, a list of justified
lines is made using the make-justified-lines-markup-1list function, which is related to the
\justified-lines built-in markup list command. An horizontal space is added at the begin-
ning using the make-hspace-markup function. Finally, the markup list is interpreted using the
interpret-markup-list function.

This new markup list command can be used as follows:

\markuplines {
\paragraph {
The art of music typography is called \italic {(plate) engraving.}
The term derives from the traditional process of music printing.
Just a few decades ago, sheet music was made by cutting and stamping
the music into a zinc or pewter plate in mirror image.
b
\override-lines #'(par-indent . 4) \paragraph {
The plate would be inked, the depressions caused by the cutting
and stamping would hold ink. An image was formed by pressing paper
to the plate. The stamping and cutting was completely done by
hand.
b
i

6.5 Contexts for programmers

6.5.1 Context evaluation

Contexts can be modified during interpretation with Scheme code. The syntax for this is

Chapter 6: Interfaces for programmers 432

\applyContext function

function should be a Scheme function taking a single argument, being the context to apply
it to. The following code will print the current bar number on the standard output during the
compile:

\applyContext
#(lambda (x)
(format #t "\nWe were called in barnumber ~a.\n"
(ly:context-property x 'currentBarNumber)))

6.5.2 Running a function on all layout objects
The most versatile way of tuning an object is \applyOutput. Its syntax is
\applyOutput context proc
where proc is a Scheme function, taking three arguments.
When interpreted, the function proc is called for every layout object found in the context
context, with the following arguments:
e the layout object itself,
e the context where the layout object was created, and
e the context where \applyOutput is processed.
In addition, the cause of the layout object, i.e., the music expression or object that was
responsible for creating it, is in the object property cause. For example, for a note head, this

is a Section “NoteHead” in Internals Reference event, and for a Section “Stem” in Internals
Reference object, this is a Section “NoteHead” in Internals Reference object.

Here is a function to use for \applyOutput; it blanks note-heads on the center-line:

(define (blanker grob grob-origin context)
(if (and (memg (ly:grob-property grob 'interfaces)
note-head-interface)
(eq? (ly:grob-property grob 'staff-position) 0))
(set! (ly:grob-property grob 'transparent) #t)))

6.6 Scheme procedures as properties

Properties (like thickness, direction, etc.) can be set at fixed values with \override, e.g.
\override Stem #'thickness = #2.0
Properties can also be set to a Scheme procedure,

\override Stem #'thickness = #(lambda (grob)
(if (= UP (ly:grob-property grob 'direction))
2.0
7.0))
cbagbaghb

f) | |

| o
U | I | | | =

In this case, the procedure is executed as soon as the value of the property is requested during
the formatting process.

Most of the typesetting engine is driven by such callbacks. Properties that typically use
callbacks include

Chapter 6: Interfaces for programmers 433

stencil The printing routine, that constructs a drawing for the symbol
X-offset The routine that sets the horizontal position
X-extent The routine that computes the width of an object

The procedure always takes a single argument, being the grob.

If routines with multiple arguments must be called, the current grob can be inserted with a
grob closure. Here is a setting from AccidentalSuggestion,

(X-offset
, (1y:make-simple-closure
o+
, (1y:make-simple-closure
(1ist ly:self-alignment-interface::centered-on-x-parent))
, (ly :make-simple-closure
(list ly:self-alignment-interface::x-aligned-on-self)))))
In this example, both ly:self-alignment-interface::x-aligned-on-self and ly:self-
alignment-interface: :centered-on-x-parent are called with the grob as argument. The
results are added with the + function. To ensure that this addition is properly executed, the
whole thing is enclosed in 1y:make-simple-closure.
In fact, using a single procedure as property value is equivalent to
(ly:make-simple-closure (ly:make-simple-closure (list proc)))

The inner ly:make-simple-closure supplies the grob as argument to proc, the outer ensures
that result of the function is returned, rather than the simple-closure object.

6.7 Using Scheme code instead of \tweak

The main disadvantage of \tweak is its syntactical inflexibility. For example, the following
produces a syntax error.

F = \tweak #'font-size #-3 -\flageolet

\relative c'' {

c4~\F c4_\F
}

With other words, \tweak doesn’t behave like an articulation regarding the syntax; in particular,
it can’t be attached with = and _

Using Scheme, this problem can be circumvented. The route to the result is given
in Section 6.3.4 [Adding articulation to notes (example)], page 425, especially how to use
\displayMusic as a helping guide.

F = #(let ((m (make-music 'ArticulationEvent
'articulation-type "flageolet")))
(set! (ly:music-property m 'tweaks)
(acons 'font-size -3
(ly :music-property m 'tweaks)))
m)

\relative c'' {

c4"\F c4_\F
}
Here, the tweaks properties of the flageolet object m (created with make-music) are extracted
with ly:music-property, a new key-value pair to change the font size is prepended to the
property list with the acons Scheme function, and the result is finally written back with set!.
The last element of the 1et block is the return value, m itself.

Chapter 6: Interfaces for programmers 434

6.8 Difficult tweaks

There are a few classes of difficult adjustments.

e One type of difficult adjustment is the appearance of spanner objects, such as slur and tie.
Initially, only one of these objects is created, and they can be adjusted with the normal
mechanism. However, in some cases the spanners cross line breaks. If this happens, these
objects are cloned. A separate object is created for every system that it is in. These are
clones of the original object and inherit all properties, including \overrides.

In other words, an \override always affects all pieces of a broken spanner. To change only
one part of a spanner at a line break, it is necessary to hook into the formatting process.
The after-line-breaking callback contains the Scheme procedure that is called after the
line breaks have been determined, and layout objects have been split over different systems.

In the following example, we define a procedure my-callback. This procedure
e determines if we have been split across line breaks
e if yes, retrieves all the split objects
e checks if we are the last of the split objects

e if yes, it sets extra-offset.

This procedure is installed into Section “Tie” in Internals Reference, so the last part of the
broken tie is translated up.

#(define (my-callback grob)
(let* (
; have we been split?
(orig (ly:grob-original grob))

; if yes, get the split pieces (our siblings)
(siblings (if (ly:grob? orig)
(ly:spanner-broken-into orig) '())))

(if (and (>= (length siblings) 2)
(eq? (car (last-pair siblings)) grob))
(ly:grob-set-property! grob 'extra-offset '(-2 . 5)))))

\relative c'' {
\override Tie #'after-line-breaking =
#my-callback
cl ~ \break c2 ~ ¢

When applying this trick, the new after-line-breaking callback should also call the
old one after-line-breaking, if there is one. For example, if using this with Hairpin,
ly:hairpin::after-line-breaking should also be called.

Chapter 6: Interfaces for programmers 435

e Some objects cannot be changed with \override for technical reasons. Examples of
those are NonMusicalPaperColumn and PaperColumn. They can be changed with the
\overrideProperty function, which works similar to \once \override, but uses a dif-
ferent syntax.

\overrideProperty
#"Score.NonMusicalPaperColumn" % Grob name
#'line-break-system-details % Property name
#' ((next-padding . 20)) % Value

Note, however, that \override, applied to NonMusicalPaperColumn and PaperColumn, still
works as expected within \context blocks.

Appendix A: Literature list 436

Appendix A Literature list

If you need to know more about music notation, here are some interesting titles to read.

Ignatzek 1995

Gerou 1996

Read 1968

Ross 1987

Klaus Ignatzek, Die Jazzmethode fiir Klavier. Schott’s Séhne 1995. Mainz, Ger-
many ISBN 3-7957-5140-3.

A tutorial introduction to playing Jazz on the piano. Omne of the first chapters
contains an overview of chords in common use for Jazz music.

Tom Gerou and Linda Lusk, Essential Dictionary of Music Notation. Alfred Pub-
lishing, Van Nuys CA ISBN 0-88284-768-6.

A concise, alphabetically ordered list of typesetting and music (notation) issues,
covering most of the normal cases.

Gardner Read, Music Notation: A Manual of Modern Practice. Taplinger Publish-
ing, New York (2nd edition).

A standard work on music notation.
Ted Ross, Teach yourself the art of music engraving and processing. Hansen House,
Miami, Florida 1987.

This book is about music engraving, i.e., professional typesetting. It contains di-
rections on stamping, use of pens and notational conventions. The sections on
reproduction technicalities and history are also interesting.

Schirmer 2001

Stone 1980

The G.Schirmer/AMP Manual of Style and Usage. G.Schirmer/AMP, NY, 2001.
(This book can be ordered from the rental department.)

This manual specifically focuses on preparing print for publication by Schirmer. It
discusses many details that are not in other, normal notation books. It also gives a
good idea of what is necessary to bring printouts to publication quality.

Kurt Stone, Music Notation in the Twentieth Century. Norton, New York 1980.

This book describes music notation for modern serious music, but starts out with a
thorough overview of existing traditional notation practices.

The source archive includes a more elaborate BibTEX bibliography of over 100 entries in
‘Documentation/bibliography/’.

Appendix B: Notation manual tables

Appendix B Notation manual tables

B.1 Chord name chart

The following charts shows two standard systems for printing chord names, along with the

pitches they represent.

Ignatzek (default) C Cm C+ (on
b3 5 b3 b5
Alternative A C C C# C
-8 g g g
pet C’ Cm’ A c°’ cmAbs
€ b3 b3b5b7 b3b547
()
:}U "5" b*:" -15»- Vb -45»- by—qu—
Dee | C® cm® CAH c?
A C7 :|f‘|.5 C[;3 :|f‘|.7 C#S #7 C7 b3 l>5
b,
:}uu “E" b-<5'- "*-15»- Vb«;»-
Def c® Cm® c® cm®
6 b3 6 9 93
Al C C C C
Q\\Ju g‘ bg- -© b.‘ -
Def C 13 lel C m7/b5/9 C7/1,9
ay O3 b3 c11b3 c9b3b5 o7 b9
h < |
bvb"C" l‘)"c" Vb*Eb- -45»-
o O c o e
7 11 11 1
A&E f) .C C ,H.C -4C»-
:Jy -©- -©- S S

Appendix B: Notat