LilyPond

The music typesetter

Usage

The LilyPond development team

This file explains how to execute the programs distributed with LilyPond version 2.14.1. In
addition, it suggests some “best practices” for efficient usage.

For more information about how this manual fits with the other documentation, or to read this
manual in other formats, see Section “Manuals” in General Information.

If you are missing any manuals, the complete documentation can be found at
http://www.lilypond.org/.

Copyright (© 1999-2011 by the authors.

Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.1 or any later version
published by the Free Software Foundation; with no Invariant Sections. A copy of
the license is included in the section entitled “GNU Free Documentation License”.

For LilyPond version 2.14.1

http://www.lilypond.org/

Table of Contents

1 Running lilypond. ... 1
1.1 NOrmal USAZE. . .o e ettt et e e e 1
1.2 Command-line USAZEttt ettt ettt e e 1

InvoKINg 1iL1ypomd . ..o uettt it e 1
Standard shell commands. i 1
Command line options for 1ilypond, 2
Environment variables 5
LilyPond in chroot jail........ ... e 5
1.3 BITOT IESSAZES « ottt et e ettt e e e 7
1.4 COMIMON BITOTS . . .t e ettt et et et e et e et et et e e e e e e e 8
Music runs off the page.o 8
An extra stafl appears. 8
Apparent error in . ./Ly/init .1y ...ttt 9
Error message Unbound variable % 9
Error message FT_Get_Glyph_Name.........cooiiiiiiii ., 10
Warning staff affinities should only decrease.......... i, 10

2 Updating files with convert-1y............ 11
2.1 Why does the syntax change? i 11
2.2 InvoKing COnVETrt =Lyttt ettt et e e 11
2.3 Command line options for convert=1y............. it 12
2.4 Problems running convert—L1y...........ouuiiniiiit 12
2.5 Manual CONVETSIONS.o vttt ettt e e ettt e 12

3 Running lilypond-book............cooiiiiiiiiiiiiiiiiii... 14
3.1 An example of a musicological document............ i, 14
3.2 Integrating music and text. ... 18

3.2 L X oo 18
3.2.2 TexinfO. .o 19
3.2.3 H ML . 20
3.2.4 DocB0OK . .o 21
3.3 Music fragment OptionSs.t 21
3.4 Invoking 1ilypond-booKuiuuiiii i 24
3.5 Filename eXtensionsottt 26
3.6 lilypond-book templates i 27
3.6.1 LA e oo e 27
3.6.2 Texinfo. ... e 27
3.6.3 MUl ... 28
3.6.4 Xelabex ..o e 28
3.7 Sharing the table of contents 29
3.8 Alternative methods of mixing text and music i .. 31

4 External programs 32
4.1 Point and click 32
4.2 Text editor SUPPOTtttt 33

Emacs mode . ..o e 33

VI IN0AC. o oot 33

Other dItOTS . . .ottt e e e 33

4.3 Converting from other formats. 33
4.3.1 Invoking midi2ly.......oonuuiiii i e 33

4.3.2 Invoking musicXmI2Lyoturtinttett et e 35

4.3.3 InvoKing @abC2Lyottt 35

4.3.4 Invoking etf2Ly.o 36

4.3.5 Other formats 37

4.4 LilyPond output in other programs.............ccoiiiiiiiiiiiiiiiiiiiia. 37
Many quotes from a large SCore. ...t 37
Inserting LilyPond output into OpenOffice.org.......... oo i .. 37
Inserting LilyPond output into other programs.............. 37

4.5 Independent incCludes.t 37
4.5.1 MIDI articulation i 37

5 Suggestions for writing files................................. 39
5.1 General sUgEeStiONSviin e 39
0.2 Typesetting existing MUSICt 40
5.3 Large Projects. . ..o 40
5.4 Troubleshootingo i 41
5.5 Make and Makefiles 41
Appendix A GNU Free Documentation License............. 48

Appendix B LilyPond index 55

Chapter 1: Running 1ilypond 1

1 Running lilypond
This chapter details the technicalities of running LilyPond.

1.1 Normal usage

Most users run LilyPond through a GUI; if you have not done so already, please read the Section
“Tutorial” in Learning Manual. If you use an alternate editor to write lilypond files, see the
documentation for that program.

1.2 Command-line usage

This section contains extra information about using LilyPond on the command-line. This may
be desirable to pass extra options to the program. In addition, there are certain extra ‘helper’
programs (such as midi21ly) which are only available on the command-line.

By ‘command-line’; we mean the command line in the operating system. Windows users
might be more familiar with the terms ‘DOS shell’ or ‘command shell’. MacOS X users might
be more familiar with the terms ‘terminal’ or ‘console’. Some additional setup is required for
MacOS X users; please see Section “MacOS X” in General Information.

Describing how to use this part of an operating system is outside the scope of this manual;
please consult other documentation on this topic if you are unfamiliar with the command-line.

Invoking lilypond
The 1ilypond executable may be called as follows from the command line.
lilypond [option]... file...
When invoked with a filename that has no extension, the .1y’ extension is tried first. To
read input from stdin, use a dash (-) for file.

When ‘filename.ly’ is processed it will produce ‘filename.ps’ and ‘filename.pdf’ as out-
put. Several files can be specified; they will each be processed independently.!

If ‘filename.ly’ contains more than one \book block, then the rest of the scores will be out-
put in numbered files, starting with ‘filename-1.pdf’. In addition, the value of output-suffix
will be inserted between the basename and the number. An input file containing

#(define output-suffix "violin")

\score { ... }
#(define output-suffix "cello")
\score { ... }

will output base‘-violin.pdf’ and base‘-cello-1.pdf’.

Standard shell commands

If your shell (i.e. command window) supports normal redirects, then you might find it useful to
use the following commands to redirect console output to a file:

e lilypond file.ly 1>stdout.log to redirect normal output
e lilypond file.ly 2>stderr.log to redirect error messages
e lilypond file.ly &>all.log to redirect all output

Consult the documentation for your shell to see if it supports these options, or if the syntax
is different. Note that these are shell commands and have nothing to do with lilypond.

1 The status of GUILE is not reset after processing a .1y file, so be careful not to change any system defaults
from within Scheme.

Chapter 1: Running 1ilypond 2

Command line options for 1ilypond

The following options are supported:

-e,-—evaluate=expr

Evaluate the Scheme expr before parsing any ‘.1y’ files. Multiple —e options may
be given, they will be evaluated sequentially.

The expression will be evaluated in the guile-user module, so if you want to use
definitions in expr, use

lilypond -e '(define-public a 42)'

on the command-line, and include

#(use-modules (guile-user))

at the top of the .1y file.

-f,——format=format

which formats should be written. Choices for format are ps, pdf, and png.

Example: 1ilypond -fpng filename.ly

-d,--define-default=var=val
This sets the internal program option var to the Scheme value val. If val is not
supplied, then #t is used. To switch off an option, no- may be prefixed to var, e.g.

—-dno-point-and-click

is the same as

—-dpoint-and-click="#f"'

Here are a few interesting options.

‘help’

Running 1ilypond -dhelp will print all of the -d options available.

‘paper-size’

‘safe’

This option sets the default paper-size,
-dpaper-size=\"letter\"
Note that the string must be enclosed in escaped quotes (\").

Do not trust the .1y input.

When LilyPond formatting is available through a web server, either the
—--safe or the --jail option MUST be passed. The --safe option will
prevent inline Scheme code from wreaking havoc, for example

#(system "rm -rf /")
{
c4"#(ly:export (ly:gulp-file "/etc/passwd"))

}
The -dsafe option works by evaluating in-line Scheme expressions
in a special safe module. This safe module is derived from GUILE
‘safe-rbrs’ module, but adds a number of functions of the LilyPond
API. These functions are listed in ‘scm/safe-1ily.scm’.

In addition, safe mode disallows \include directives and disables the
use of backslashes in TEX strings.

In safe mode, it is not possible to import LilyPond variables into Scheme.

-dsafe does not detect resource overuse. It is still possible to make the
program hang indefinitely, for example by feeding cyclic data structures
into the backend. Therefore, if using LilyPond on a publicly accessible

Chapter 1: Running 1ilypond 3

‘backend’

‘preview’

webserver, the process should be limited in both CPU and memory
usage.

The safe mode will prevent many useful LilyPond snippets from being

compiled. The --jail is a more secure alternative, but requires more
work to set up.

the output format to use for the back-end. Choices for format are

ps for PostScript.

Postscript files include TTF, Typel and OTF fonts. No
subsetting of these fonts is done. When using oriental char-
acter sets, this can lead to huge files.

eps
for encapsulated PostScript. This dumps every page (sys-

tem) as a separate ‘EPS’ file, without fonts, and as one col-
lated ‘EPS’ file with all pages (systems) including fonts.

This mode is used by default by 1ilypond-book.

svg
for SVG (Scalable Vector Graphics).

This creates a single SVG file, without embedded fonts, for
every page of output. It is recommended to install the
Century Schoolbook fonts, included with your LilyPond
installation, for optimal rendering. Under UNIX, simply
copy these fonts from the LilyPond directory (typically
‘/usr/share/lilypond/VERSION/fonts/otf/’) to
‘*/.fonts/’. The SVG output should be compatible with
any SVG editor or user agent.

scm
for a dump of the raw, internal Scheme-based drawing com-
mands.

null do not output a printed score; has the same effect as
—-dno-print-pages.

Example: 1ilypond -dbackend=svg filename.ly

Generate an output file containing the titles and the first system of

music. If \bookpart blocks are used, the titles and first system of every

\bookpart will appear in the output. The ps, eps, and svg backends
support this option.

‘print-pages’

-h,--help

Generate the full pages, the default. -dno-print-pages is useful in
combination with -dpreview.

Show a summary of usage.

-H,--header=FIELD

Dump a header field to file ‘BASENAME. FIELD’.

--include, -I=directory
Add directory to the search path for input files.

Chapter 1: Running 1ilypond 4

Multiple -I options may be given. The search will start in the first defined directory,
and if the file to be included is not found the search will continue in subsequent
directories.

-i,--init=file

Set init file to file (default: ‘init.ly’).

-0,-—output=FILE or FOLDER

--ps
~~png

--pdf

Set the default output file to FILE or, if a folder with that name exists, direct the
output to FOLDER, taking the file name from the input file. The appropriate suffix
will be added (e.g. .pdf for pdf) in both cases.

Generate PostScript.

Generate pictures of each page, in PNG format. This implies ——ps. The resolution
in DPI of the image may be set with

—dresolution=110

Generate PDF. This implies --ps.

-j,——jail=user,group, jail ,dir

Run 1lilypond in a chroot jail.

The --jail option provides a more flexible alternative to --safe when LilyPond
formatting is available through a web server or whenever LilyPond executes exter-
nally provided sources.

The --jail option works by changing the root of 1ilypond to jail just before
starting the actual compilation process. The user and group are then changed to
match those provided, and the current directory is changed to dir. This setup
guarantees that it is not possible (at least in theory) to escape from the jail. Note
that for --jail to work 1ilypond must be run as root, which is usually accomplished
in a safe way using sudo.

Setting up a jail is a slightly delicate matter, as we must be sure that LilyPond is
able to find whatever it needs to compile the source inside the jail. A typical setup
comprises the following items:

Setting up a separate filesystem

A separate filesystem should be created for LilyPond, so that it can be
mounted with safe options such as noexec, nodev, and nosuid. In this
way, it is impossible to run executables or to write directly to a device
from LilyPond. If you do not want to create a separate partition, just
create a file of reasonable size and use it to mount a loop device. A
separate filesystem also guarantees that LilyPond cannot write more
space than it is allowed.

Setting up a separate user
A separate user and group (say, 1ily/lily) with low privileges should
be used to run LilyPond inside the jail. There should be a single direc-
tory writable by this user, which should be passed in dir.

Preparing the jail
LilyPond needs to read a number of files while running. All these files
are to be copied into the jail, under the same path they appear in the
real root filesystem. The entire content of the LilyPond installation
(e.g., ‘/usr/share/lilypond’) should be copied.
If problems arise, the simplest way to trace them down is to run Lily-

Pond using strace, which will allow you to determine which files are
missing.

Chapter 1: Running 1ilypond 5

Running LilyPond

In a jail mounted with noexec it is impossible to execute any external
program. Therefore LilyPond must be run with a backend that does
not require any such program. As we already mentioned, it must be
also run with superuser privileges (which, of course, it will lose imme-
diately), possibly using sudo. It is a good idea to limit the number of
seconds of CPU time LilyPond can use (e.g., using ulimit -t), and, if
your operating system supports it, the amount of memory that can be
allocated.

-v,--version
Show version information.

-V,--verbose
Be verbose: show full paths of all files read, and give timing information.

-W,--warranty
Show the warranty with which GNU LilyPond comes. (It comes with NO WAR-
RANTY!)

Environment variables
lilypond recognizes the following environment variables:

LILYPOND_DATADIR
This specifies a directory where locale messages and data files will be looked up by
default. The directory should contain subdirectories called ‘1y/’, ‘ps/’, ‘tex/’, etc.

LANG This selects the language for the warning messages.

LILYPOND_GC_YIELD
A variable, as a percentage, that tunes memory management behavior. A higher
values means the program uses more memory, a smaller value means more CPU
time is used. The default value is 70.

LilyPond in chroot jail

Setting up the server to run LilyPond in a chroot jail is a complicated task. The steps are
listed below. Examples in the steps are from Ubuntu Linux, and may require the use of sudo
as appropriate.

e Install the necessary packages: LilyPond, GhostScript, and ImageMagick.
e Create a new user by the name of 1ily:
adduser 1lily
This will create a new group for the 1ily user as well, and a home folder, /home/1ily
e In the home folder of the 1ily user create a file to use as a separate filesystem:
dd if=/dev/zero of=/home/lily/loopfile bs=1k count= 200000
This example creates a 200MB file for use as the jail filesystem.

e Create a loop device, make a file system and mount it, then create a folder that can be
written by the 1ily user:

mkdir /mnt/lilyloop

losetup /dev/loop0 /home/lily/loopfile
mkfs -t ext3 /dev/loop0 200000

mount -t ext3 /dev/loopO /mnt/lilyloop
mkdir /mnt/lilyloop/lilyhome

chown 1lily /mnt/lilyloop/lilyhome

Chapter 1: Running 1ilypond 6

e In the configuration of the servers, the JAIL will be /mnt/1ilyloop and the DIR will be
/lilyhome.

e Create a big directory tree in the jail by copying the necessary files, as shown in the sample
script below.

You can use sed to create the necessary copy commands for a given executable:

for i in "/usr/local/lilypond/usr/bin/lilypond" "/bin/sh" "/usr/bin/; \
do 1dd $i | sed 's/.*=> \/\C.*\/\)\C[T(Q*\).*/mkdir -p \1 \&\& \
cp -L \V/\N1\2 \1\2/" | sed 's/\t\/\C.*\/\\(C.*x\) (.*)$/mkdir -p \
\1 \&\& cp -L \/\1\2 \1\2/' | sed '/.*=>.%/d'; done

Example script for 32-bit Ubuntu 8.04

#!/bin/sh
defaults set here

username=1ily

home=/home

loopdevice=/dev/1loop0

jaildir=/mnt/lilyloop

the prefix (without the leading slash!)
lilyprefix=usr/local

the directory where lilypond is installed on the system
lilydir=/$lilyprefix/lilypond/

userhome=$home/$username
loopfile=$userhome/loopfile
adduser $username

dd if=/dev/zero of=$loopfile bs=1k count=200000
mkdir $jaildir

losetup $loopdevice $loopfile

mkfs -t ext3 $loopdevice 200000
mount -t ext3 $loopdevice $jaildir
mkdir $jaildir/lilyhome

chown $username $jaildir/lilyhome
cd $jaildir

mkdir -p bin usr/bin usr/share usr/lib usr/share/fonts $lilyprefix tmp
chmod a+w tmp

cp -r -L $1lilydir $lilyprefix

cp -L /bin/sh /bin/rm bin

cp -L /usr/bin/convert /usr/bin/gs usr/bin

cp -L /usr/share/fonts/truetype usr/share/fonts

Now the library copying magic
for i in "$lilydir/usr/bin/lilypond" "$lilydir/usr/bin/guile" "/bin/sh" \
"/bin/rm" "/usr/bin/gs" "/usr/bin/convert"; do ldd $i | sed 's/.*=> \
\ANCHEN/NINCT O*\) . x/mkdir -p \1 \&\& cp -L \/\1\2 \1\2/' | sed \
's/NE\N/NCA\N/NNC*\) (Cx)$/mkdir -p \1 \&\& cp -L \/\1\2 \1\2/' \
| sed '/.*x=>.%/d'; done | sh -s

The shared files for ghostscript...

Chapter 1: Running 1ilypond 7

cp -L -r /usr/share/ghostscript usr/share
The shared files for ImageMagick
cp -L -r /usr/lib/ImageMagick* usr/lib

Now, assuming that you have test.ly in /mnt/lilyloop/lilyhome,
you should be able to run:
#i## Note that /$lilyprefix/bin/lilypond is a script, which sets the
LD_LIBRARY_PATH - this is crucial
/$1lilyprefix/bin/lilypond -jlily,lily,/mnt/lilyloop,/lilyhome test.ly

1.3 Error messages

Different error messages can appear while compiling a file:

Warning Something looks suspect. If you are requesting something out of the ordinary then
you will understand the message, and can ignore it. However, warnings usually
indicate that something is wrong with the input file.

Error Something is definitely wrong. The current processing step (parsing, interpreting,
or formatting) will be finished, but the next step will be skipped.

Fatal error
Something is definitely wrong, and LilyPond cannot continue. This happens rarely.
The most usual cause is misinstalled fonts.

Scheme error
Errors that occur while executing Scheme code are caught by the Scheme inter-
preter. If running with the verbose option (-V or --verbose) then a call trace of
the offending function call is printed.

Programming error
There was some internal inconsistency. These error messages are intended to help
the programmers and debuggers. Usually, they can be ignored. Sometimes, they
come in such big quantities that they obscure other output.

Aborted (core dumped)
This signals a serious programming error that caused the program to crash. Such
errors are considered critical. If you stumble on one, send a bug-report.

If warnings and errors can be linked to some part of the input file, then error messages have
the following form

filename :1lineno:columnno: message
offending input line

A line-break is inserted in the offending line to indicate the column where the error was
found. For example,

test.ly:2:19: error: not a duration: 5
{c'4 e
5g'}

These locations are LilyPond’s best guess about where the warning or error occurred, but
(by their very nature) warnings and errors occur when something unexpected happens. If you
can’t see an error in the indicated line of your input file, try checking one or two lines above the
indicated position.

More information about errors is given in Section 1.4 [Common errors|, page 8.

9

Chapter 1: Running 1ilypond 8

1.4 Common errors

The error conditions described below occur often, yet the cause is not obvious or easily found.
Once seen and understood, they are easily handled.

Music runs off the page

Music running off the page over the right margin or appearing unduly compressed is almost
always due to entering an incorrect duration on a note, causing the final note in a measure to
extend over the bar line. It is not invalid if the final note in a measure does not end on the
automatically entered bar line, as the note is simply assumed to carry over into the next measure.
But if a long sequence of such carry-over measures occurs the music can appear compressed or
may flow off the page because automatic line breaks can be inserted only at the end of complete
measures, i.e., where all notes end before or at the end of the measure.

Note: An incorrect duration can cause line breaks to be inhibited, lead-
ing to a line of highly compressed music or music which flows off the

page.

The incorrect duration can be found easily if bar checks are used, see Section “Bar and bar
number checks” in Notation Reference.

If you actually intend to have a series of such carry-over measures you will need to insert
an invisible bar line where you want the line to break. For details, see Section “Bar lines” in
Notation Reference.

An extra staff appears

If contexts are not created explicitly with \new or \context, they will be silently created as
soon as a command is encountered which cannot be applied to an existing context. In simple
scores the automatic creation of contexts is useful, and most of the examples in the LilyPond
manuals take advantage of this simplification. But occasionally the silent creation of contexts
can give rise to unexpected new staves or scores. For example, it might be expected that the
following code would cause all note heads within the following staff to be colored red, but in
fact it results in two staves with the note heads remaining the default black in the lower staff.

\override Staff.NoteHead #'color = #red
\new Staff { a }

This is because a Staff context does not exist when the override is processed, so one is
implicitly created and the override is applied to it, but then the \new Staff command creates
another, separate, staff into which the notes are placed. The correct code to color all note heads
red is

\new Staff {
\override Staff.NoteHead #'color = #red
a

Chapter 1: Running 1ilypond 9

71

As a second example, if a \relative command is placed inside a \repeat command, two
staves result, the second offset from the first, because the \repeat command generates two
\relative blocks, which each implicitly create Staff and Voice blocks.

\repeat unfold 2 {
\relative ¢' { c4 de f }
}

NO

ey
D
-

N (&

]
.
|

NG
o
N @]

L

Explicitly instantiating the Voice context fixes the problem:

\new Voice {
\repeat unfold 2 {
\relative ¢' { c4 de f }
}
}

DO

{2
[4 \ W]

Y, e @ o @

Apparent error in ../ly/init.1ly

>

Various obscure error messages may appear about syntax errors in ‘. ./ly/init.1ly’ if the input
file is not correctly formed, for example, if it does not contain correctly matched braces or quote
signs.

The most common error is a missing brace, (}), at the end of a score block. Here the solution
is obvious: check the score block is correctly terminated. The correct structure of an input file
is described in Section “How LilyPond input files work” in Learning Manual. Using an editor
which automatically highlights matching brackets and braces is helpful to avoid such errors.

A second common cause is no white space between the last syllable of a lyrics block and the
terminating brace, (}). Without this separation the brace is taken to be part of the syllable. It is
always advisable to ensure there is white space before and after every brace. For the importance
of this when using lyrics, see Section “Entering lyrics” in Notation Reference.

This error message can also appear if a terminating quote sign, ("), is omitted. In this
case an accompanying error message should give a line number close to the line in error. The
mismatched quote will usually be on the line one or two above.

Error message Unbound variable %

This error message will appear at the bottom of the console output or log file together with a
“GUILE signalled an error ...” message every time a Scheme routine is called which (invalidly)
contains a LilyPond rather than a Scheme comment.

LilyPond comments begin with a percent sign, (%), and must not be used within Scheme
routines. Scheme comments begin with a semi-colon, (;).

Chapter 1: Running 1ilypond 10

Error message FT_Get_Glyph_Name

This error messages appears in the console output or log file if an input file contains a non-ASCII
character and was not saved in UTF-8 encoding. For details, see Section “Text encoding” in
Notation Reference.

Warning staff affinities should only decrease

This warning can appear if there are no staves in the printed output, for example if there are
just a ChordName context and a Lyrics context as in a lead sheet. The warning messages can
be avoided by making one of the contexts behave as a staff by inserting

\override VerticalAxisGroup #'staff-affinity = ##f
at its start. For details, see “Spacing of non-staff lines” in Section “Flexible vertical spacing
within systems” in Notation Reference.

Chapter 2: Updating files with convert-1y 11

2 Updating files with convert-ly

The LilyPond input syntax is routinely changed to simplify it or improve it in different ways.
As a side effect of this, the LilyPond interpreter often is no longer compatible with older input
files. To remedy this, the program convert-1ly can be used to deal with most of the syntax
changes between LilyPond versions.

2.1 Why does the syntax change?

The LilyPond input syntax occasionally changes. As LilyPond itself improves, the syntax (input
language) is modified accordingly. Sometimes these changes are made to make the input easier
to read and write or sometimes the changes are made to accommodate new features of LilyPond.

For example, all \paper and \layout property names are supposed to be written in the
form first-second-third. However, in version 2.11.60, we noticed that the printallheaders
property did not follow this convention. Should we leave it alone (confusing new users who must
deal with an inconsistent input format), or change it (annoying old users with existing scores)?
In this case, we decided to change the name to print-all-headers. Fortunately, this change
can be automated with our convert-1y tool.

Unfortunately, convert-1y cannot handle all input changes. For example, in LilyPond 2.4
and earlier, accents and non-English letters were entered using LaTeX — displaying the French
word for Christmas was entered as No\"el. But in LilyPond 2.6 and above, the special & must
be entered directly into the LilyPond file as an UTF-8 character. convert-1y cannot change
all the LaTeX special characters into UTF-8 characters; you must manually update your old
LilyPond input files.

2.2 Invoking convert-ly

convert-1ly uses \version statements in the input file to detect the old version number. In
most cases, to upgrade your input file it is sufficient to run

convert-ly —-e myfile.ly

in the directory containing the file. This will upgrade ‘myfile.ly’ in-place and preserve the
original file in ‘myfile.ly™".

Note: convert-1ly always converts up to the last syntax change handled
by it. This means that the \version number left in the file is usually
lower than the version of convert-1ly itself.

To convert all the input files in a directory together use
convert-ly —-e *.ly

Alternatively, if you want to specify a different name for the upgraded file, preserving the
original file and name unchanged, use

convert-ly myfile.ly > mynewfile.ly

The program will list the version numbers for which conversions have been made. If no
version numbers are listed the file is already up to date.

MacOS X users may execute these commands under the menu entry Compile > Update
syntax.

Windows users should enter these commands in a Command Prompt window, which is usually
found under Start > Accessories > Command Prompt.

Chapter 2: Updating files with convert-1y 12

2.3 Command line options for convert-1ly

The program is invoked as follows:
convert-ly [option]... filename...
The following options can be given:
-e,——edit
Apply the conversions direct to the input file, modifying it in-place.
-f,-—-from=from-patchlevel
Set the version to convert from. If this is not set, convert-1y will guess this, on
the basis of \version strings in the file. E.g. -——from=2.10.25
-n,--no-version
Normally, convert-1y adds a \version indicator to the output. Specifying this
option suppresses this.

-8, ——show-rules
Show all known conversions and exit.

--to=to-patchlevel
Set the goal version of the conversion. It defaults to the latest available version.
E.g. --t0=2.12.2
-h, —-help
Print usage help.
To upgrade LilyPond fragments in texinfo files, use
convert-ly —--from=... --to=... --no-version *.itely
To see the changes in the LilyPond syntax between two versions, use

convert-ly --from=... --to=... -s

2.4 Problems running convert-1ly

When running convert-ly in a Command Prompt window under Windows on a file which has
spaces in the filename or in the path to it, it is necessary to surround the entire input file name
with three (!) sets of double quotes:

convert-ly """D:/My Scores/Ode.ly""" > "D:/My Scores/new 0Ode.ly"

If the simple convert-1y -e *.1ly command fails because the expanded command line be-
comes too long, the convert-1y command may be placed in a loop instead. This example for
UNIX will upgrade all ‘.1y’ files in the current directory

for £ in *.ly; do convert-ly -e $f; done;
In the Windows Command Prompt window the corresponding command is
for %x in (*.ly) do convert-ly -e """Jx"""

Not all language changes are handled. Only one output option can be specified. Automat-
ically updating scheme and LilyPond scheme interfaces is quite unlikely; be prepared to tweak
scheme code manually.

2.5 Manual conversions

In theory, a program like convert-1y could handle any syntax change. After all, a computer
program interprets the old version and the new version, so another computer program can
translate one file into another!.

LAt least, this is possible in any LilyPond file which does not contain scheme. If there is scheme in the file, then
the LilyPond file contains a Turing-complete language, and we run into problems with the famous “Halting
Problem” in computer science.

Chapter 2: Updating files with convert-1y 13

However, the LilyPond project has limited resources: not all conversions are performed
automatically. Below is a list of known problems.

1.6->2.0:
Doesn't always convert figured bass correctly, specifically things like {<
>}. Mats' comment on working around this:
To be able to run convert-ly
on it, I first replaced all occurrences of '{<' to some dummy like '{#'
and similarly I replaced '>}' with '&}'. After the conversion, I could
then change back from '{ #' to '{ <' and from '& }' to '> }'.
Doesn't convert all text markup correctly. In the old markup syntax,
it was possible to group a number of markup commands together within
parentheses, e.g.
-#'((bold italic) "string")
This will incorrectly be converted into
-\markup{{\bold italic} "string"}
instead of the correct
—\markup{\bold \italic "string"}
2.0->2.2:
Doesn't handle \partcombine
Doesn't do \addlyrics => \lyricsto, this breaks some scores with multiple
stanzas.
2.0->2.4:
\magnify isn't changed to \fontsize.
- \magnify #m => \fontsize #f, where f = 61ln(m)/1n(2)
remove-tag isn't changed.
- \applyMusic #(remove-tag '. . .) => \keepWithTag #'.
first-page-number isn't changed.
- first-page-number no => print-first-page-number = ##f
Line breaks in header strings aren't converted.
- \\\\ as line break in \header strings => \markup \center-align <
"First Line" "Second Line" >
Crescendo and decrescendo terminators aren't converted.

- \rced => \!
- \rc => \!
2.2->2.4:

\turn0ff (used in \set Staff.VoltaBracket = \turn0ff) is not properly
converted.

2.4.2->2.5.9

\markup{ \center-align <{ ... }> } should be converted to:
\markup{ \center-align {\line { ... }} }

but now, \line is missing.
2.4->2.6

Special LaTeX characters such as $°$ in text are not converted to UTF8.
2.8

\score{} must now begin with a music expression. Anything else
(particularly \header{}) must come after the music.

Chapter 3: Running 1ilypond-book 14

3 Running 1lilypond-book

If you want to add pictures of music to a document, you can simply do it the way you would do
with other types of pictures. The pictures are created separately, yielding PostScript output or
PNG images, and those are included into a N TEX or HTML document.

lilypond-book provides a way to automate this process: This program extracts snippets of
music from your document, runs 1ilypond on them, and outputs the document with pictures
substituted for the music. The line width and font size definitions for the music are adjusted to
match the layout of your document.

This is a separate program from lilypond itself, and is run on the command line; for more

information, see Section 1.2 [Command-line usage], page 1. If you have MacOS 10.3 or 10.4 and
you have trouble running 1ilypond-book, see Section “MacOS X” in General Information.

This procedure may be applied to KITEX, HTML, Texinfo or DocBook documents.

3.1 An example of a musicological document

Some texts contain music examples. These texts are musicological treatises, songbooks, or
manuals like this. Such texts can be made by hand, simply by importing a PostScript figure
into the word processor. However, there is an automated procedure to reduce the amount of
work involved in HTML, KTEX, Texinfo and DocBook documents.

A script called 1ilypond-book will extract the music fragments, format them, and put back
the resulting notation. Here we show a small example for use with I¥TEX. The example also
contains explanatory text, so we will not comment on it further.

Input

\documentclass [adpaper]{article}
\begin{document}

Documents for \verb+lilypond-book+ may freely mix music and text.
For example,

\begin{lilypond}
\relative c' {
c2 e2 \times 2/3 { f8 a b } a2 e4
}
\end{1lilypond}

Options are put in brackets.

\begin{lilypond} [fragment,quote,staffsize=26,verbatim]
c'4 £16

\end{1lilypond}

Larger examples can be put into a separate file, and introduced with
\verb+\lilypondfile+.

\lilypondfile[quote,noindent]{screech-boink.ly}

(If needed, replace @file{screech-boink.ly} by any @file{.ly} file
you put in the same directory as this file.)

Chapter 3: Running 1ilypond-book 15

\end{document}

Processing

Save the code above to a file called ‘1ilybook.lytex’, then in a terminal run

lilypond-book --output=out --pdf lilybook.lytex
lilypond-book (GNU LilyPond) 2.14.1

Reading lilybook.lytex...

..lots of stuff deleted..

Compiling lilybook.tex...

cd out

pdflatex lilybook

..lots of stuff deleted..

xpdf lilybook

(replace xpdf by your favorite PDF viewer)

Running 1ilypond-book and latex creates a lot of temporary files, which would clutter up
the working directory. To remedy this, use the -—output=dir option. It will create the files in
a separate subdirectory ‘dir’.

Finally the result of the IXTEX example shown above.! This finishes the tutorial section.

1 This tutorial is processed with Texinfo, so the example gives slightly different results in layout.

Chapter 3: Running 1ilypond-book 16

Output

Documents for 1ilypond-book may freely mix music and text. For example,

() 2 |

)\I r £) | | ‘l I |
@ A U] (;*l > 7 ‘I
[Y) <

Options are put in brackets.

c'd f16

N |®

Gt
o

)

L

¢

Larger examples can be put into a separate file, and introduced with \1ilypondfile.

/\
o o ; =
H 1 e £ N2 he
* h|4 ha | @
N VYD Q o
ANV (@]
[Y)

F
S

£a
<
XN

If a tagline is required, either default or custom, then the entire snippet must be enclosed
in a \book { } construct

\book{
\header{
title = "A scale in LilyPond"
}

\relative c¢' {
cdefgabc
}
}

Chapter 3: Running 1ilypond-book

A scale in LilyPond
o)

o <o @

Music engraving by LilyPond 2.14.1—www.lilypond.org

17

Chapter 3: Running 1ilypond-book 18

3.2 Integrating music and text

Here we explain how to integrate LilyPond with various output formats.

3.2.1 BIEX

IXTEX is the de-facto standard for publishing layouts in the exact sciences. It is built on top of
the TEX typesetting engine, providing the best typography available anywhere.

See The Not So Short Introduction to TEX for an overview on how to use INTEX.
Music is entered using

\begin{lilypond} [options,go,here]
YOUR LILYPOND CODE
\end{lilypond}

or
\lilypondfile[options,go,here]l{filename}

or

\lilypond [options,go,here]l{ YOUR LILYPOND CODE }

Additionally, \lilypondversion displays the current version of lilypond. Running
lilypond-book yields a file that can be further processed with IATEX.

We show some examples here. The 1ilypond environment

\begin{lilypond}[quote,fragment,staffsize=26]
c'd' e f' g'2g'2

\end{1lilypond}

produces

0
="

e -

The short version

\

\lilypond[quote,fragment,staffsize=11]{<c' e' g'>}
produces

=

Currently, you cannot include { or } within \1ilypond{}, so this command is only useful with
the fragment option.

The default line width of the music will be adjusted by examining the commands in the
document preamble, the part of the document before \begin{document}. The 1ilypond-book
command sends these to INTEX to find out how wide the text is. The line width for the music
fragments is then adjusted to the text width. Note that this heuristic algorithm can fail easily;
in such cases it is necessary to use the line-width music fragment option.

Each snippet will call the following macros if they have been defined by the user:
e \preLilyPondExample called before the music,
e \postLilyPondExample called after the music,

e \betweenLilyPondSystem[1] is called between systems if 1ilypond-book has split the
snippet into several PostScript files. It must be defined as taking one parameter and will be
passed the number of files already included in this snippet. The default is to simply insert
a \linebreak.

http://www.ctan.org/tex-archive/info/lshort/english/

Chapter 3: Running 1ilypond-book 19

Selected Snippets

Sometimes it is useful to display music elements (such as ties and slurs) as if they continued
after the end of the fragment. This can be done by breaking the staff and suppressing inclusion
of the rest of the LilyPond output.

In TEX, define \betweenLilyPondSystem in such a way that inclusion of other systems is
terminated once the required number of systems are included. Since \betweenLilyPondSystem
is first called after the first system, including only the first system is trivial.

\def\betweenLilyPondSystem#1{\endinput}

\begin{lilypond} [fragment]

c'IN(C e'(c'” \break c' d) e f\)
\end{1lilypond}

If a greater number of systems is requested, a TEX conditional must be used before the
\endinput. In this example, replace ‘2’ by the number of systems you want in the output.
\def\betweenlLilyPondSystem#1{

\ifnum#1<2\else\expandafter\endinput\fi
}
(Since \endinput immediately stops the processing of the current input file we need
\expandafter to delay the call of \endinput after executing \fi so that the \if-\fi clause is
balanced.)

Remember that the definition of \betweenLilyPondSystem is effective until TEX quits the
current group (such as the INTEX environment) or is overridden by another definition (which is,
in most cases, for the rest of the document). To reset your definition, write
\let\betweenLilyPondSystem\undefined
in your KTEX source.

This may be simplified by defining a TEX macro
\def\onlyFirstNSystems#1{

\def\betweenLilyPondSystem##1{%
\ifnum##1<#1\else\expandafter\endinput\fi}
}
and then saying only how many systems you want before each fragment,
\onlyFirstNSystems{3}
\begin{lilypond}...\end{1lilypond}
\onlyFirstNSystems{1}
\begin{lilypond}...\end{lilypond}

See also

There are specific 1ilypond-book command line options and other details to know when
processing INTEX documents, see Section 3.4 [Invoking lilypond-book], page 24.

3.2.2 Texinfo

Texinfo is the standard format for documentation of the GNU project. An example of a Texinfo
document is this manual. The HTML, PDF, and Info versions of the manual are made from the
Texinfo document.

In the input file, music is specified with

@lilypond[options,go,here]
YOUR LILYPOND CODE
@end lilypond

or

Chapter 3: Running 1ilypond-book 20

@lilypond[options,go,here]{ YOUR LILYPOND CODE }
or
@lilypondfile[options,go,herel{filename}
Additionally, @lilypondversion displays the current version of lilypond.

When lilypond-book is run on it, this results in a Texinfo file (with extension ‘.texi’)
containing @image tags for HTML, Info and printed output. lilypond-book generates images
of the music in EPS and PDF formats for use in the printed output, and in PNG format for use
in HTML and Info output.

We show two simple examples here. A 1ilypond environment

@lilypond[fragment]
Cl dl el fl g|2 gl
@end lilypond

produces
7 4 i i
7\ r) | |
[[YA W] ~ ~
L4 L4

SERSE
The short version

@lilypond[fragment,staffsize=11]{<c' e' g'>}

produces

=

Contrary to ITEX, @lilypond{...} does not generate an in-line image. It always gets a
paragraph of its own.

3.2.3 HTML

Music is entered using

<lilypond fragment relative=2>

\key c \minor c4 es g2

</lilypond>

lilypond-book then produces an HTML file with appropriate image tags for the music frag-
ments:

6 | 2

ANV . |

U |

For inline pictures, use <1ilypond ... />, where the options are separated by a colon from

the music, for example

Some music in <lilypond relative=2: a b c/> a line of text.
To include separate files, say

<lilypondfile optionl option2 ...>filename</lilypondfile>

For a list of options to use with the 1ilypond or lilypondfile tags, see Section 3.3 [Music
fragment options|, page 21.

Additionally, <1ilypondversion/> displays the current version of lilypond.

Chapter 3: Running 1ilypond-book 21

3.2.4 DocBook

For inserting LilyPond snippets it is good to keep the conformity of our DocBook document,
thus allowing us to use DocBook editors, validation etc. So we don’t use custom tags, only
specify a convention based on the standard DocBook elements.

Common conventions

For inserting all type of snippets we use the mediaobject and inlinemediaobject element, so
our snippets can be formatted inline or not inline. The snippet formatting options are always
provided in the role property of the innermost element (see in next sections). Tags are chosen
to allow DocBook editors format the content gracefully. The DocBook files to be processed with
lilypond-book should have the extension ‘.1lyxml’.

Including a LilyPond file

This is the most simple case. We must use the ‘.1y’ extension for the included file, and insert
it as a standard imageobject, with the following structure:

<mediaobject>
<imageobject>
<imagedata fileref="musicl.ly" role="printfilename" />
</imageobject>
</mediaobject>
Note that you can use mediaobject or inlinemediaobject as the outermost element as you
wish.

Including LilyPond code

Including LilyPond code is possible by using a programlisting, where the language is set to
lilypond with the following structure:

<inlinemediaobject>
<textobject>
<programlisting language="lilypond" role="fragment verbatim staffsize=16 ragged-right r
\context Staff \with {
\remove Time_signature_engraver
\remove Clef_engraver}
{ c4a(fis) }
</programlisting>
</textobject>
</inlinemediaobject>
As you can see, the outermost element is a mediaobject or inlinemediaobject, and there
is a textobject containing the programlisting inside.

Processing the DocBook document

Running 1ilypond-book on our ‘. lyxml’ file will create a valid DocBook document to be further
processed with ‘.xml’ extension. If you use dblatex, it will create a PDF file from this document
automatically. For HTML (HTML Help, JavaHelp etc.) generation you can use the official
DocBook XSL stylesheets, however, it is possible that you have to make some customization for
it.

3.3 Music fragment options

In the following, a ‘LilyPond command’ refers to any command described in the previous sections
which is handled by lilypond-book to produce a music snippet. For simplicity, LilyPond
commands are only shown in IXTEX syntax.

http://dblatex.sourceforge.net

Chapter 3: Running 1ilypond-book 22

Note that the option string is parsed from left to right; if an option occurs multiple times,
the last one is taken.

The following options are available for LilyPond commands:

staffsize=ht
Set staff size to ht, which is measured in points.

ragged-right
Produce ragged-right lines with natural spacing, i.e., ragged-right = ##t is added
to the LilyPond snippet. This is the default for the \1ilypond{} command if no
line-width option is present. It is also the default for the 1ilypond environment
if the fragment option is set, and no line width is explicitly specified.

noragged-right
For single-line snippets, allow the staff length to be stretched to equal that of the
line width, i.e., ragged-right = ##f is added to the LilyPond snippet.

line-width

line-width=size\unit
Set line width to size, using unit as units. unit is one of the following strings: cm,
mm, in, or pt. This option affects LilyPond output (this is, the staff length of the
music snippet), not the text layout.

If used without an argument, set line width to a default value (as computed with a
heuristic algorithm).

If no line-width option is given, lilypond-book tries to guess a default for
lilypond environments which don’t use the ragged-right option.

papersize=string
Where string is a paper size defined in ‘scm/paper.scm’ i.e. a5, quarto, 11x17 etc.

Values not defined in ‘scm/paper.scm’ will be ignored, a warning will be posted and
the snippet will be printed using the default a4 size.

notime Do not print the time signature, and turns off the timing (time signature, bar lines)
in the score.

fragment Make 1lilypond-book add some boilerplate code so that you can simply enter, say,
c'd
without \layout, \score, etc.

nofragment
Do not add additional code to complete LilyPond code in music snippets. Since this
is the default, nofragment is redundant normally.

indent=size\unit
Set indentation of the first music system to size, using unit as units. unit is one of
the following strings: cm, mm, in, or pt. This option affects LilyPond, not the text
layout.

noindent Set indentation of the first music system to zero. This option affects LilyPond, not
the text layout. Since no indentation is the default, noindent is redundant normally.

quote Reduce line length of a music snippet by 2%0.4in and put the output into a quotation
block. The value ‘0.4in’ can be controlled with the exampleindent option.

exampleindent
Set the amount by which the quote option indents a music snippet.

Chapter 3: Running 1ilypond-book 23

relative

relative=n

Use relative octave mode. By default, notes are specified relative to middle C.
The optional integer argument specifies the octave of the starting note, where the
default 1 is middle C. relative option only works when fragment option is set, so
fragment is automatically implied by relative, regardless of the presence of any
(no) fragment option in the source.

LilyPond also uses 1ilypond-book to produce its own documentation. To do that, some
more obscure music fragment options are available.

verbatim

addversion

texidoc

The argument of a LilyPond command is copied to the output file and enclosed
in a verbatim block, followed by any text given with the intertext option (not
implemented yet); then the actual music is displayed. This option does not work
well with \1ilypond{} if it is part of a paragraph.

If verbatim is used in a 1ilypondfile command, it is possible to enclose verbatim
only a part of the source file. If the source file contain a comment containing ‘begin
verbatim’ (without quotes), quoting the source in the verbatim block will start
after the last occurrence of such a comment; similarly, quoting the source verbatim
will stop just before the first occurrence of a comment containing ‘end verbatim’,
if there is any. In the following source file example, the music will be interpreted in
relative mode, but the verbatim quote will not show the relative block, i.e.

\relative c¢' { % begin verbatim
cd e2 g4
f2 e % end verbatim

}
will be printed with a verbatim block like

c4 e2 g4
f2 e

If you would like to translate comments and variable names in verbatim output but
not in the sources, you may set the environment variable LYDOC_LOCALEDIR to a
directory path; the directory should contain a tree of ‘.mo’ message catalogs with
lilypond-doc as a domain.

(Only for Texinfo output.) Prepend line \version @w{"@version{}"} to verbatim
output.

(Only for Texinfo output.) If 1ilypond is called with the ‘--header=texidoc’ op-
tion, and the file to be processed is called ‘foo.1ly’, it creates a file ‘foo.texidoc’ if
there is a texidoc field in the \header. The texidoc option makes 1ilypond-book
include such files, adding its contents as a documentation block right before the
music snippet.

Assuming the file ‘foo.1ly’ contains

\header {

texidoc = "This file demonstrates a single note."
}
{ca?
and we have this in our Texinfo document ‘test.texinfo’
@lilypondfile[texidoc]{foo.1ly}

the following command line gives the expected result

Chapter 3: Running 1ilypond-book 24

lilypond-book --pdf --process="lilypond \
-dbackend=eps --header=texidoc" test.texinfo

Most LilyPond test documents (in the ‘input’ directory of the distribution) are
small ¢.1y’ files which look exactly like this.

For localization purpose, if the Texinfo document contains @documentlanguage
LANG and ‘foo.ly’ header contains a texidocLANG field, and if 1ilypond is called
with ‘--header=texidocLANG’, then ‘foo.texidocLANG’ will be included instead of
‘foo.texidoc’.

lilyquote
(Only for Texinfo output.) This option is similar to quote, but only the music
snippet (and the optional verbatim block implied by verbatim option) is put into
a quotation block. This option is useful if you want to quote the music snippet but
not the texidoc documentation block.

doctitle (Only for Texinfo output.) This option works similarly to texidoc option: if
lilypond is called with the ‘--header=doctitle’ option, and the file to be pro-
cessed is called ‘foo.ly’ and contains a doctitle field in the \header, it creates a
file ‘foo.doctitle’. When doctitle option is used, the contents of ‘foo.doctitle’,
which should be a single line of text, is inserted in the Texinfo document as
@lydoctitle text. @lydoctitle should be a macro defined in the Texinfo doc-
ument. The same remark about texidoc processing with localized languages also
applies to doctitle.

nogettext
(Only for Texinfo output.) Do not translate comments and variable names in the
snippet quoted verbatim.

printfilename
If a LilyPond input file is included with \1ilypondfile, print the file name right
before the music snippet. For HTML output, this is a link. Only the base name of
the file is printed, i.e. the directory part of the file path is stripped.

3.4 Invoking lilypond-book

lilypond-book produces a file with one of the following extensions: ‘.tex’, ‘.texi’, ‘.html’
or ‘.xml’, depending on the output format. All of ‘.tex’, ‘.texi’ and ‘.xml’ files need further
processing.

Format-specific instructions

HETEX
There are two ways of processing your A TEX document for printing or publishing: getting a PDF
file directly with PDFIXTEX, or getting a PostScript file with XTEX via a DVI to PostScript
translator like dvips. The first way is simpler and recommended®, and whichever way you use,
you can easily convert between PostScript and PDF with tools, like ps2pdf and pdf2ps included
in Ghostscript package.

To produce a PDF file through PDFIATEX, use

lilypond-book --pdf yourfile.lytex
pdflatex yourfile.tex

To produce PDF output via KTEX/dvips/ps2pdf, you should do

1 Note that PDFIATEX and IATEX may not be both usable to compile any IATEX document, that is why we
explain the two ways.

Chapter 3: Running 1ilypond-book 25

lilypond-book yourfile.lytex
latex yourfile.tex

dvips -Ppdf yourfile.dvi
ps2pdf yourfile.ps

The ‘.dvi’ file created by this process will not contain note heads. This is normal; if you follow
the instructions, they will be included in the ‘.ps’ and ‘.pdf’ files.

Running dvips may produce some warnings about fonts; these are harmless and may be
ignored. If you are running latex in twocolumn mode, remember to add -t landscape to the
dvips options.

Texinfo

To produce a Texinfo document (in any output format), follow the normal procedures for Texinfo;
this is, either call texi2pdf or texi2dvi or makeinfo, depending on the output format you want
to create. See the documentation of Texinfo for further details.

Command line options

lilypond-book accepts the following command line options:

-f format

--format=format
Specify the document type to process: html, latex, texi (the default) or docbook.
If this option is missing, 1ilypond-book tries to detect the format automatically.
see Section 3.5 [Filename extensions|, page 26. Currently, texi is the same as
texi-html.

-F filter

-—filter=filter
Pipe snippets through filter. 1ilypond-book will not —filter and —process at the
same time. For example,

lilypond-book --filter='convert-ly --from=2.0.0 -' my-book.tely

-h
--help Print a short help message.

-1 dir

--include=dir
Add dir to the include path. 1ilypond-book also looks for already compiled snippets
in the include path, and does not write them back to the output directory, so in
some cases it is necessary to invoke further processing commands such as makeinfo
or latex with the same -I dir options.

-o dir

—--output=dir
Place generated files in directory dir. Running lilypond-book generates lots of
small files that LilyPond will process. To avoid all that garbage in the source
directory, use the ‘--output’ command line option, and change to that directory
before running latex or makeinfo

lilypond-book --output=out yourfile.lytex
cd out

Chapter 3: Running 1ilypond-book 26

--skip-lily-check
Do not fail if no lilypond output is found. It is used for LilyPond Info documentation
without images.
--skip-png-check
Do not fail if no PNG images are found for EPS files. It is used for LilyPond Info
documentation without images.
--lily-output-dir=dir
Write lily-XXX files to directory dir, link into ——output directory. Use this option
to save building time for documents in different directories which share a lot of
identical snippets.
--info-images-dir=dir
Format Texinfo output so that Info will look for images of music in dir.
--latex-program=prog
Run executable prog instead of latex. This is useful if your document is processed
with xelatex, for example.

--left-padding=amount
Pad EPS boxes by this much. amount is measured in millimeters, and is 3.0 by
default. This option should be used if the lines of music stick out of the right
margin.
The width of a tightly clipped system can vary, due to notation elements that stick
into the left margin, such as bar numbers and instrument names. This option will
shorten each line and move each line to the right by the same amount.

-P command

—--process=command
Process LilyPond snippets using command. The default command is 1ilypond.
lilypond-book will not ——filter and --process at the same time.

——pdf Create PDF files for use with PDFIXTREX.

--use-source-file-names
Write snippet output files with the same base name as their source file. This option
works only for snippets included with 1ilypondfile and only if directories implied
by —--output-dir and --1ily-output-dir options are different.

-V
—--verbose
Be verbose.
-V
—--version
Print version information.

Known issues and warnings

The Texinfo command @pagesizes is not interpreted. Similarly, IXTEX commands that change
margins and line widths after the preamble are ignored.

Only the first \score of a LilyPond block is processed.

3.5 Filename extensions

You can use any filename extension for the input file, but if you do not use the recommended
extension for a particular format you may need to manually specify the output format; for details,

Chapter 3: Running 1ilypond-book 27

see Section 3.4 [Invoking lilypond-book|, page 24. Otherwise, 1ilypond-book automatically
selects the output format based on the input filename’s extension.

extension output format
‘. html’ HTML
‘. htmly’ HTML
‘.itely’ Texinfo
‘.latex’ KTEX

‘. lytex’ TEX

‘. lyxml’ DocBook
‘.tely’ Texinfo
‘L tex’ BTEX
‘.texi’ Texinfo
‘.texinfo’ Texinfo
‘. xml’ HTML

If you use the same filename extension for the input file than the extension 1ilypond-book
uses for the output file, and if the input file is in the same directory as 1ilypond-book working
directory, you must use ——output option to make 1ilypond-book running, otherwise it will exit
with an error message like “Output would overwrite input file”.

3.6 lilypond-book templates

These templates are for use with 1ilypond-book. If you're not familiar with this program,
please refer to Chapter 3 [lilypond-book]|, page 14.

3.6.1 LaTeX

You can include LilyPond fragments in a LaTeX document.

\documentclass[]{article}
\begin{document}
Normal LaTeX text.

\begin{lilypond}
\relative c'' {
a4 bcd

}
\end{1lilypond}

More LaTeX text, and options in square brackets.

\begin{lilypond} [fragment,relative=2,quote,staffsize=26,verbatim]
d4 c b a

\end{1lilypond}

\end{document}

3.6.2 Texinfo

You can include LilyPond fragments in Texinfo; in fact, this entire manual is written in Texinfo.

\input texinfo ©@node Top
Q@top

Texinfo text

Chapter 3: Running 1ilypond-book

@lilypond
\relative c' {
ad b cd

X
@end lilypond

More Texinfo text, and options in brackets.

@lilypond[verbatim,fragment,ragged-right]
d4 c b a
Q@end lilypond

Q@bye

3.6.3 html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<!-- header_tag -—>

<HTML>

<body>

<p>
Documents for lilypond-book may freely mix music and text. For
example,
<lilypond>
\relative c'' {
a4 bcd
+
</lilypond>
</p>

<p>
Another bit of lilypond, this time with options:

<lilypond fragment quote staffsize=26 verbatim>
a4 b cd

</lilypond>

</p>

</body>
</html>

3.6.4 xelatex

\documentclass{article}

\usepackage{ifxetex}

\ifxetex

Jixetex specific stuff
\usepackage{xunicode,fontspec,xltxtra}t
\setmainfont [Numbers=01dStyle] {Times New Roman}

28

Chapter 3: Running 1ilypond-book 29

\setsansfont{Arial}

\else

%This can be empty if you are not going to use pdftex
\usepackage [T1]{fontenc}

\usepackage [utf8] {inputenc}
\usepackage{mathptmx}%Times
\usepackage{helvet}/Helvetica

\fi

%Here you can insert all packages that pdftex also understands
\usepackage [ngerman,finnish,english]{babel}
\usepackage{graphicx}

\begin{document}
\title{A short document with LilyPond and xelatex}
\maketitle

Normal \textbf{font} commands inside the \emph{text} work,
because they \textsf{are supported by \LaTeX{} and XeteX.}

If you want to use specific commands like \verb+\XeTeX+, you
should include them again in a \verb+\ifxetex+ environment.
You can use this to print the \ifxetex \XeTeX{} command \else
XeTeX command \fi which is not known to normal \LaTeX .

In normal text you can easily use LilyPond commands, like this:

\begin{lilypond}
{a2 bc'8c' c¢' c'}
\end{lilypond}

\noindent
and so on.

The fonts of snippets set with LilyPond will have to be set from
inside

of the snippet. For this you should read the AU on how to use
lilypond-book.

\selectlanguage{ngerman}

Auch Umlaute funktionieren ohne die \LaTeX -Befehle, wie auch alle
anderen

seltsamen Zeichen: __ ______ , wenn sie von der Schriftart

unterst__tzt werden.
\end{document}

3.7 Sharing the table of contents
These functions already exist in the OrchestralLily package:

http://repo.or.cz/w/orchestrallily.git

For greater flexibility in text handling, some users prefer to export the table of contents from
lilypond and read it into TEX.

http://repo.or.cz/w/orchestrallily.git

Chapter 3: Running 1ilypond-book 30

Exporting the ToC from LilyPond

This assumes that your score has multiple movements in the same lilypond output file.

#(define (oly:create-toc-file layout pages)
(let* ((label-table (ly:output-def-lookup layout 'label-page-table)))
(if (not (null? label-table))
(let* ((format-line (lambda (toc-item)
(let* ((label (car toc-item))
(text (caddr toc-item))
(label-page (and (list? label-table)
(assoc label label-table)))
(page (and label-page (cdr label-page))))

(format #f "“a, section, 1, {"a}, "a" page text label))))
(formatted-toc-items (map format-line (toc-items)))
(whole-string (string-join formatted-toc-items ",\n"))
(output-name (ly:parser-output-name parser))

(outfilename (format "~a.toc" output-name))

(outfile (open-output-file outfilename)))
(if (output-port? outfile)

(display whole-string outfile)

(ly:warning (_ "Unable to open output file “a for the TOC information") outfilename))
(close-output-port outfile)))))

\paper {
#(define (page-post-process layout pages) (oly:create-toc-file layout pages))
}

Importing the ToC into LaTeX

In LaTeX, the header should include:

\usepackage{pdfpages}
\includescore{nameofthescore}

where \includescore is defined as:
Tototoa To o oo To o Toto fo o Fo o oo o o o oo oo Fo o Fo o Fo o Fo o oo o o o o o o o oo oo Yoo Yoo fo o Fo o oo o o o oo Fo o oo oo Jo o Fo o fo o o
% \includescore{PossibleExtension}

Tl lohlohloloholololololololololololololo o oo ololotaololotolotlololototottotetotetodotododododototodoioiododododododo oo o o o o o o o o

Read in the TOC entries for a PDF file from the corresponding .toc file.
This requires some heave latex tweaking, since reading in things from a file
% and inserting it into the arguments of a macro is not (easily) possible

=N ==

Solution by Patrick Fimml on #latex on April 18, 2009:
\readfile{filename}{\variable}

reads in the contents of the file into \variable (undefined if file
% doesn't exist)

\newread\readfile@f

\def\readfile@line#1{J

{\catcode \""M=10\global\read\readfile@f to \readfile@tmpl}
\edef\do{\noexpand\g@addto@macro{\noexpand#1}{\readfile@tmp}}\do%
\ifeof\readfile@f\else},

\readfile@line{#1}V

\fi%

}

\def\readfile#1#2{}

\openin\readfile@f=#1 %

\ifeof\readfile@fY

\typeout{No TOC file #1 available!}%

\else,

\gdef#2{}Y

\readfile@line{#2}/

\fi

\closein\readfile@f?,

1Y

e s

Chapter 3: Running 1ilypond-book 31

\newcommand{\includescore} [1]{
\def\oly@fname{\oly@basename\@ifmtarg{#1}{}{_#1}}
\let\oly@addtotoc\undefined
\readfile{\oly@xxxxxxxxx}{\oly@addtotoc}
\ifx\oly@addtotoc\undefined

\includepdf [pages=-]1{\oly@fname}

\else

\edef\includeit{\noexpand\includepdf [pages=-,addtotoc={\oly@addtotoc}]
{\oly@fname}}\includeit

\fi

}

3.8 Alternative methods of mixing text and music

Other means of mixing text and music (without 1ilypond-book) are discussed in Section 4.4
[LilyPond output in other programs]|, page 37.

Chapter 4: External programs 32

4 External programs

LilyPond can interact with other programs in various ways.

4.1 Point and click

Point and click lets you find notes in the input by clicking on them in the PDF viewer. This
makes it easier to find input that causes some error in the sheet music.

When this functionality is active, LilyPond adds hyperlinks to the PDF file. These hyperlinks
are sent to the web-browser, which opens a text-editor with the cursor in the right place.

To make this chain work, you should configure your PDF viewer to follow hyperlinks using
the ‘1ilypond-invoke-editor’ script supplied with LilyPond.

For Xpdf on UNIX, the following should be present in ‘xpdfrc’!
urlCommand "lilypond-invoke-editor %s"

The program ‘lilypond-invoke-editor’ is a small helper program. It will invoke an editor
for the special textedit URIs, and run a web browser for others. It tests the environment
variable EDITOR for the following patterns,

emacs this will invoke

emacsclient ——no-wait +line:column file

gvim this will invoke

gvim --remote +:1line:normcolumn file

nedit this will invoke

nc -noask +line file'

The environment variable LYEDITOR is used to override this. It contains the command line to
start the editor, where %(file)s, %(column)s, %(1line)s is replaced with the file, column and
line respectively. The setting

emacsclient --no-wait +%(line)s:%(column)s %(file)s
for LYEDITOR is equivalent to the standard emacsclient invocation.

The point and click links enlarge the output files significantly. For reducing the size of PDF
and PS files, point and click may be switched off by issuing

\pointAndClickOff
in a ‘.1y’ file. Point and click may be explicitly enabled with
\pointAndClickOn

Alternately, you may disable point and click with a command-line option:

lilypond -dno-point-and-click file.ly

Note: You should always turn off point and click in any LilyPond files to be distributed to avoid
including path information about your computer in the .pdf file, which can pose a security risk.

1 On UNIX, this file is found either in ‘/etc/xpdfrc’ or as ‘.xpdfrc’ in your home directory.

Chapter 4: External programs 33

4.2 Text editor support
There is support for different text editors for LilyPond.

Emacs mode

Fmacs has a ‘lilypond-mode’, which provides keyword autocompletion, indentation, LilyPond
specific parenthesis matching and syntax coloring, handy compile short-cuts and reading Lily-
Pond manuals using Info. If ‘1ilypond-mode’ is not installed on your platform, see below.

An Emacs mode for entering music and running LilyPond is contained in the source
archive in the ‘elisp’ directory. Do make install to install it to elispdir. The file
‘lilypond-init.el’ should be placed to load-path‘/site-start.d/’ or appended to your
‘~/.emacs’ or ‘~/.emacs.el’.

As a user, you may want add your source path (e.g. ‘~/site-lisp/’) to your load-path by
appending the following line (as modified) to your ‘~/.emacs’

(setq load-path (append (list (expand-file-name "~/site-lisp")) load-path))

Vim mode

For Vim, a filetype plugin, indent mode, and syntax-highlighting mode are available to use with
LilyPond. To enable all of these features, create (or modify) your ‘$HOME/.vimrc’ to contain
these three lines, in order:

filetype off

set runtimepath+=/usr/local/share/lilypond/current/vim/

filetype on

If LilyPond is not installed in the ‘/usr/local/’ directory, change the path appropriately. This
topic is discussed in Section “Other sources of information” in Learning Manual.

Other editors

Other editors (both text and graphical) support LilyPond, but their special configuration files
are not distributed with LilyPond. Consult their documentation for more information. Such
editors are listed in Section “Easier editing” in General Information.

4.3 Converting from other formats

Music can be entered also by importing it from other formats. This chapter documents the tools
included in the distribution to do so. There are other tools that produce LilyPond input, for
example GUI sequencers and XML converters. Refer to the website for more details.

These are separate programs from 1lilypond itself, and are run on the command line; see
Section 1.2 [Command-line usage|, page 1 for more information. If you have MacOS 10.3 or 10.4
and you have trouble running some of these scripts, e.g. convert-1ly, see Section “MacOS X”
in General Information.

Known issues and warnings

We unfortunately do not have the resources to maintain these programs; please consider them
“as-is”. Patches are appreciated, but bug reports will almost certainly not be resolved.

4.3.1 Invoking midi2ly
midi2ly translates a Type 1 MIDI file to a LilyPond source file.

MIDI (Music Instrument Digital Interface) is a standard for digital instruments: it specifies
cabling, a serial protocol and a file format. The MIDI file format is a de facto standard format
for exporting music from other programs, so this capability may come in useful when importing
files from a program that has a converter for a direct format.

http://www.vim.org
http://lilypond.org

Chapter 4: External programs 34

midi2ly converts tracks into Section “Staff” in Internals Reference and channels into Section
“Voice” in Internals Reference contexts. Relative mode is used for pitches, durations are only
written when necessary.

It is possible to record a MIDI file using a digital keyboard, and then convert it to ‘.1ly’.
However, human players are not rhythmically exact enough to make a MIDI to LY conversion
trivial. When invoked with quantizing (-s and -d options) midi21ly tries to compensate for these
timing errors, but is not very good at this. It is therefore not recommended to use midi21ly for
human-generated midi files.

It is invoked from the command-line as follows,
midi2ly [option]... midi-file

Note that by ‘command-line’, we mean the command line of the operating system. See
Section 4.3 [Converting from other formats|, page 33, for more information about this.

The following options are supported by midi21ly.

-a, ——absolute-pitches
Print absolute pitches.

-d, ——duration-quant=DUR
Quantize note durations on DUR.

-e, ——explicit-durations
Print explicit durations.

-h,--help
Show summary of usage.

-k, --key=acc [:minor]
Set default key. acc > 0 sets number of sharps; acc < 0 sets number of flats. A
minor key is indicated by :1.

-0, ——output=~file
Write output to file.

-s, ——start-quant=DUR
Quantize note starts on DUR.

-t, ——allow-tuplet=DUR*NUM/DEN
Allow tuplet durations DUR*NUM /DEN.

-v, ——verbose
Be verbose.
-V, ——version

Print version number.

-w, ——warranty
Show warranty and copyright.

-xX, ——text-lyrics
Treat every text as a lyric.

Known issues and warnings

Overlapping notes in an arpeggio will not be correctly rendered. The first note will be read and
the others will be ignored. Set them all to a single duration and add phrase markings or pedal
indicators.

Chapter 4: External programs 35

4.3.2 Invoking musicxml2ly
MusicXML is an XML dialect for representing music notation.

musicxml2ly extracts the notes, articulations, score structure, lyrics, etc. from part-wise
MusicXML files, and writes them to a ‘.1y’ file. It is invoked from the command-line.

It is invoked from the command-line as follows,
musicxml2ly [option]... xml-file

Note that by ‘command-line’, we mean the command line of the operating system. See
Section 4.3 [Converting from other formats|, page 33, for more information about this.

If the given filename is ‘-’ musicxml2ly reads input from the command line.
The following options are supported by musicxml2ly:
-a, ——absolute
convert pitches in absolute mode.
-h,--help
print usage and option summary.

-1, ——language=LANG
use LANG for pitch names, e.g. 'deutsch’ for note names in German.

--1xml use the Ixml.etree Python package for XML-parsing; uses less memory and cpu time.

--nd —-no-articulation-directions
do not convert directions (7, _ or -) for articulations, dynamics, etc.

--no-beaming
do not convert beaming information, use LilyPond’s automatic beaming instead.
-o0,——-output=file
set output filename to file. If file is
given, xml-file‘. 1y’ will be used.

4

-, the output will be printed on stdout. If not

-r,--relative
convert pitches in relative mode (default).

-v,—-verbose
be verbose.

--version
print version information.

-z ,—-—compressed
input file is a zip-compressed MusicXML file.

4.3.3 Invoking abc2ly

[Note: This program is not supported, and may be remove from future versions of LilyPond. }

ABC is a fairly simple ASCII based format. It is described at the ABC site:
http://www.walshaw.plus.com/abc/learn.html.

abc2ly translates from ABC to LilyPond. It is invoked as follows:
abc2ly [option]... abc-file

The following options are supported by abc2ly:

-b,--beams=None
preserve ABC’s notion of beams

http://www.musicxml.org/
http://www.walshaw.plus.com/abc/learn.html

Chapter 4: External programs 36

-h,--help
this help

-o0,—-output=file
set output filename to file.

-s,--strict
be strict about success

--version
print version information.
There is a rudimentary facility for adding LilyPond code to the ABC source file. If you say:
%ALY voices \set autoBeaming = ##f

This will cause the text following the keyword ‘voices’ to be inserted into the current voice
of the LilyPond output file.

Similarly,
WHLY slyrics more words

will cause the text following the ‘slyrics’ keyword to be inserted into the current line of lyrics.

Known issues and warnings

The ABC standard is not very ‘standard’. For extended features (e.g., polyphonic music) dif-
ferent conventions exist.

Multiple tunes in one file cannot be converted.
ABC synchronizes words and notes at the beginning of a line; abc21ly does not.

abc2ly ignores the ABC beaming.

4.3.4 Invoking etf2ly

{Note: This program is not supported, and may be remove from future versions of LilyPond. }

ETF (Enigma Transport Format) is a format used by Coda Music Technology’s Finale prod-
uct. etf21ly will convert part of an ETF file to a ready-to-use LilyPond file.

It is invoked from the command-line as follows.
etf2ly [option]... etf-file

Note that by ‘command-line’, we mean the command line of the operating system. See
Section 4.3 [Converting from other formats|, page 33, for more information about this.

The following options are supported by etf2ly:

-h,--help
this help

-o,——output=FILE
set output filename to FILE

—--version
version information

Known issues and warnings

The list of articulation scripts is incomplete. Empty measures confuse etf21ly. Sequences of
grace notes are ended improperly.

Chapter 4: External programs 37

4.3.5 Other formats

LilyPond itself does not come with support for any other formats, but some external tools can
also generate LilyPond files. These are listed in Section “Easier editing” in General Information.

4.4 LilyPond output in other programs

This section shows methods to integrate text and music, different than the automated method
with 1ilypond-book.

Many quotes from a large score

If you need to quote many fragments from a large score, you can also use the clip systems feature,
see Section “Extracting fragments of music” in Notation Reference.

Inserting LilyPond output into OpenOffice.org
LilyPond notation can be added to OpenOffice.org with OOoLilyPond.

Inserting LilyPond output into other programs

To insert LilyPond output in other programs, use 1lilypond instead of 1ilypond-book. Each
example must be created individually and added to the document; consult the documentation
for that program. Most programs will be able to insert LilyPond output in ‘PNG’, ‘EPS’, or ‘PDF’
formats

To reduce the white space around your LilyPond score, use the following options
\paper{

indent=0\mm

line-width=120\mm

oddFooterMarkup=##f

oddHeaderMarkup=##f

bookTitleMarkup = ##f

scoreTitleMarkup = ##f

{cl}
To produce a useful ‘EPS’ file, use
lilypond -dbackend=eps -dno-gs-load-fonts -dinclude-eps-fonts myfile.ly

‘PNG’:
lilypond -dbackend=eps -dno-gs-load-fonts -dinclude-eps-fonts --png myfile.ly

4.5 Independent includes

Some people have written large (and useful!) code that can be shared between projects. This
code might eventually make its way into LilyPond itself, but until that happens, you must
download and \include them manually.

4.5.1 MIDI articulation

LilyPond can be used to produce MIDI output, for “proof-hearing” what has been written.
However, only dynamics, explicit tempo markings, and the notes and durations themselves are
produced in the output.

The articulate project is one attempt to get more of the information in the score into he
MIDI. It works by shortening notes not under slurs, to ‘articulate’ the notes. The amount of
shortening depends on any articulation markings attached to a note: staccato halves the note

http://ooolilypond.sourceforge.net

Chapter 4: External programs 38

value, tenuto gives a note its full duration, and so on. The script also realises trills and turns,
and could be extended to expand other ornaments such as mordents.

http://www.nicta.com.au/people/chubbp/articulate

Known issues and warnings

Its main limitation is that it can only affect things it knows about: anything that is merely
textual markup (instead of a note property) is still ignored.

http://www.nicta.com.au/people/chubbp/articulate

Chapter 5: Suggestions for writing files 39

5 Suggestions for writing files

Now you're ready to begin writing larger LilyPond input files — not just the little examples in
the tutorial, but whole pieces. But how should you go about doing it?

As long as LilyPond can understand your input files and produce the output that you want, it

doesn’t matter what your input files look like. However, there are a few other things to consider
when writing LilyPond input files.

What if you make a mistake? The structure of a LilyPond file can make certain errors easier
(or harder) to find.

What if you want to share your input files with somebody else? In fact, what if you want
to alter your own input files in a few years? Some LilyPond input files are understandable
at first glance; others may leave you scratching your head for an hour.

What if you want to upgrade your LilyPond file for use with a later version of LilyPond?
The input syntax changes occasionally as LilyPond improves. Most changes can be done au-
tomatically with convert-1y, but some changes might require manual assistance. LilyPond
input files can be structured in order to be easier (or harder) to update.

5.1 General suggestions

Here are a few suggestions that can help you to avoid or fix problems:

Include \version numbers in every file. Note that all templates contain \version infor-
mation. We highly recommend that you always include the \version, no matter how small
your file is. Speaking from personal experience, it’s quite frustrating to try to remember
which version of LilyPond you were using a few years ago. convert-1ly requires you to
declare which version of LilyPond you used.

Include checks: Section “Bar and bar number checks” in Notation Reference, Section “Oc-
tave checks” in Notation Reference. If you include checks every so often, then if you make a
mistake, you can pinpoint it quicker. How often is ‘every so often’? It depends on the com-
plexity of the music. For very simple music, perhaps just once or twice. For very complex
music, perhaps every bar.

One bar per line of text. If there is anything complicated, either in the music itself or in
the output you desire, it’s often good to write only one bar per line. Saving screen space
by cramming eight bars per line just isn’t worth it if you have to ‘debug’ your input files.

Comment your input files. Use either bar numbers (every so often) or references to musical
themes (‘second theme in violins,” ‘fourth variation,” etc.). You may not need comments
when you’re writing the piece for the first time, but if you want to go back to change
something two or three years later, or if you pass the source over to a friend, it will be much
more challenging to determine your intentions or how your file is structured if you didn’t
comment the file.

Indent your braces. A lot of problems are caused by an imbalance in the number of { and

I3

Explicitly add durations at the beginnings of sections and variables. If you specify c4 d e
at the beginning of a phrase (instead of just ¢ d e) you can save yourself some problems if
you rearrange your music later.

Separate tweaks from music definitions. See Section “Saving typing with variables and
functions” in Learning Manual, and Section “Style sheets” in Learning Manual.

Chapter 5: Suggestions for writing files 40

5.2 Typesetting existing music

If you are entering music from an existing score (i.e., typesetting a piece of existing sheet music),

e Enter the manuscript (the physical copy of the music) into LilyPond one system at a time
(but still only one bar per line of text), and check each system when you finish it. You
may use the showLastLength or showFirstLength properties to speed up processing — see
Section “Skipping corrected music” in Notation Reference.

e Define mBreak = { \break } and insert \mBreak in the input file whenever the manuscript
has a line break. This makes it much easier to compare the LilyPond music to the original
music. When you are finished proofreading your score, you may define mBreak = { } to
remove all those line breaks. This will allow LilyPond to place line breaks wherever it feels
are best.

e When entering a part for a transposing instrument into a variable, it is recommended that
the notes are wrapped in

\transpose ¢ natural-pitch {...}

(where natural-pitch is the open pitch of the instrument) so that the music in the variable
is effectively in C. You can transpose it back again when the variable is used, if required, but
you might not want to (e.g., when printing a score in concert pitch, converting a trombone
part from treble to bass clef, etc.) Mistakes in transpositions are less likely if all the music
in variables is at a consistent pitch.

Also, only ever transpose to/from C. That means that the only other keys you will use are
the natural pitches of the instruments - bes for a B-flat trumpet, aes for an A-flat clarinet,
etc.

5.3 Large projects

When working on a large project, having a clear structure to your lilypond input files becomes
vital.

e Use a variable for each voice, with a minimum of structure inside the definition. The
structure of the \score section is the most likely thing to change; the violin definition is
extremely unlikely to change in a new version of LilyPond.

violin = \relative c'' {
gd c'8. el6
+
\score {
\new GrandStaff {
\new Staff {
\violin
}

}
}

e Separate tweaks from music definitions. This point was made previously, but for large
projects it is absolutely vital. We might need to change the definition of fthenp, but then
we only need to do this once, and we can still avoid touching anything inside violin.

fthenp = _\markup{
\dynamic f \italic \small { 2nd } \hspace #0.1 \dynamic p }
violin = \relative c'' {
g4\fthenp c'8. el6
}

Chapter 5: Suggestions for writing files 41

5.4 Troubleshooting

Sooner or later, you will write a file that LilyPond cannot compile. The messages that LilyPond
gives may help you find the error, but in many cases you need to do some investigation to
determine the source of the problem.

The most powerful tools for this purpose are the single line comment (indicated by %) and
the block comment (indicated by %{ ... %}). If you don’t know where a problem is, start
commenting out huge portions of your input file. After you comment out a section, try compiling
the file again. If it works, then the problem must exist in the portion you just commented. If it
doesn’t work, then keep on commenting out material until you have something that works.

In an extreme case, you might end up with only

\score {
<<
% \melody
% \harmony
% \bass
>>
\layout{}
}

(in other words, a file without any music)

If that happens, don’t give up. Uncomment a bit — say, the bass part — and see if it works.
If it doesn’t work, then comment out all of the bass music (but leave \bass in the \score
uncommented.

bass = \relative c' {
YA
cd ccc
dddd
ht
}

Now start slowly uncommenting more and more of the bass part until you find the problem
line.

Another very useful debugging technique is constructing Section “Tiny examples” in General
Information.

5.5 Make and Makefiles

Pretty well all the platforms Lilypond can run on support a software facility called make. This
software reads a special file called a Makefile that defines what files depend on what others
and what commands you need to give the operating system to produce one file from another.
For example the makefile would spell out how to produce ‘ballad.pdf’ and ‘ballad.midi’ from
‘pallad.ly’ by running Lilypond.

There are times when it is a good idea to create a Makefile for your project, either for your
own convenience or as a courtesy to others who might have access to your source files. This is
true for very large projects with many included files and different output options (e.g. full score,
parts, conductor’s score, piano reduction, etc.), or for projects that require difficult commands
to build them (such as 1ilypond-book projects). Makefiles vary greatly in complexity and
flexibility, according to the needs and skills of the authors. The program GNU Make comes
installed on GNU /Linux distributions and on MacOS X, and it is also available for Windows.

See the GNU Make Manual for full details on using make, as what follows here gives only a
glimpse of what it can do.

Chapter 5: Suggestions for writing files 42

The commands to define rules in a makefile differ according to platform; for instance the
various forms of Linux and MacOS use bash, while Windows uses cmd. Note that on MacOS X,
you need to configure the system to use the command-line interpreter. Here are some example
makefiles, with versions for both Linux/MacOS and Windows.

The first example is for an orchestral work in four movements with a directory structure as
follows:

Symphony/

|-- MIDI/

|-- Makefile

|-- Notes/

| |-- cello.ily
|-- figures.ily
|-- horn.ily
|-- oboe.ily
|-- trioString.ily
|-- viola.ily

|
|
|
|
|
[|-- violinOne.ily
| “—- violinTwo.ily
|-- PDF/
|-- Parts/
[| --— symphony-cello.ly
| | -— symphony-horn.ly
| | -— symphony-oboes.ly
| | -- symphony-viola.ly
I | -- symphony-violinOne.ly
[—-- symphony-violinTwo.ly
| -- Scores/
| | -— symphony.ly
| |-- symphonyI.ly
I | -- symphonyII.ly
[| --— symphonyIII.ly
| -- symphonyIV.ly
"—- symphonyDefs.ily
The ‘.1y’ files in the ‘Scores’ and ‘Parts’ directories get their notes from ‘.ily’ files in the
‘Notes’ directory:
%hty top of file "symphony-cello.ly"
\include ../definitions.ily
\include ../Notes/cello.ily

The makefile will have targets of score (entire piece in full score), movements (individual
movements in full score), and parts (individual parts for performers). There is also a target
archive that will create a tarball of the source files, suitable for sharing via web or email. Here
is the makefile for GNU/Linux or MacOS X. It should be saved with the name Makefile in the
top directory of the project:

Note: When a target or pattern rule is defined, the subsequent lines must begin with tabs, not
spaces.

the name stem of the output files

piece = symphony

determine how many processors are present

CPU_CORES="cat /proc/cpuinfo | grep -ml "cpu cores" | sed s/".*: "//°

Chapter 5: Suggestions for writing files 43

The command to run lilypond
LILY_CMD = lilypond -ddelete-intermediate-files \
-dno-point-and-click -djob-count=$(CPU_CORES)

The suffixes used in this Makefile.
.SUFFIXES: .ly .ily .pdf .midi

Input and output files are searched in the directories listed in
the VPATH variable. All of them are subdirectories of the current
directory (given by the GNU make variable ~CURDIR').
VPATH = \

$ (CURDIR) /Scores \

$ (CURDIR)/PDF \

$(CURDIR) /Parts \

$ (CURDIR) /Notes

The pattern rule to create PDF and MIDI files from a LY input file.
The .pdf output files are put into the “PDF' subdirectory, and the
.midi files go into the "MIDI' subdirectory.
%h.pdf %.midi: %.1ly
$(LILY_CMD) $<; \ # this line begins with a tab
if test -f "$*x.pdf"; then \
mv "$*.pdf" PDF/; \
fi; \
if test -f "$*x.midi"; then \
mv "$*.midi" MIDI/; \
fi

notes = \
cello.ily \
horn.ily \
oboe.ily \
viola.ily \
violinOne.ily \
violinTwo.ily

The dependencies of the movements.
$(piece)I.pdf: $(piece)I.ly $(notes)
$(piece)II.pdf: $(piece)Il.ly $(notes)
$(piece)III.pdf: $(piece)III.ly $(notes)
$(piece)IV.pdf: $(piece)IV.ly $(notes)

The dependencies of the full score.
$(piece) .pdf: $(piece).ly $(notes)

The dependencies of the parts.

$(piece)-cello.pdf: $(piece)-cello.ly cello.ily
$(piece)-horn.pdf: $(piece)-horn.ly horn.ily
$(piece)-oboes.pdf: $(piece)-oboes.ly oboe.ily
$(piece)-viola.pdf: $(piece)-viola.ly viola.ily
$(piece)-violinOne.pdf: $(piece)-violinOne.ly violinOne.ily
$(piece)-violinTwo.pdf: $(piece)-violinTwo.ly violinTwo.ily

Chapter 5: Suggestions for writing files 44

Type "make score' to generate the full score of all four
movements as one file.

.PHONY: score

score: $(piece).pdf

Type "make parts' to generate all parts.
Type "make foo.pdf' to generate the part for instrument “foo'.
Example: “make symphony-cello.pdf'.
.PHONY: parts
parts: $(piece)-cello.pdf \
$(piece)-violinOne.pdf \
$(piece)-violinTwo.pdf \
$(piece)-viola.pdf \
$(piece)-oboes.pdf \
$ (piece)-horn.pdf

Type “make movements' to generate files for the
four movements separately.
.PHONY: movements
movements: $(piece)I.pdf \
$(piece)II.pdf \
$(piece)III.pdf \
$(piece)IV.pdf

all: score parts movements

archive:
tar -cvvf stamitz.tar \ # this line begins with a tab
—--exclude=#+pdf --exclude=*"~ \
-—exclude=*midi --exclude=*.tar \
../Stamitz/*

There are special complications on the Windows platform. After downloading and installing
GNU Make for Windows, you must set the correct path in the system’s environment variables
so that the DOS shell can find the Make program. To do this, right-click on "My Computer,"
then choose Properties and Advanced. Click Environment Variables, and then in the System
Variables pane, highlight Path, click edit, and add the path to the GNU Make executable file,
which will look something like this:

C:\Program Files\GnuWin32\bin

The makefile itself has to be altered to handle different shell commands and to deal with
spaces that are present in some default system directories. The archive target is eliminated
since Windows does not have the tar command, and Windows also has a different default
extension for midi files.

WINDOWS VERSION

#it

piece = symphony

LILY_CMD = lilypond -ddelete-intermediate-files \
-dno-point-and-click \
-djob-count=$ (NUMBER_OF_PROCESSORS)

#get the 8.3 name of CURDIR (workaround for spaces in PATH)

Chapter 5: Suggestions for writing files

workdir = $(shell for /f "tokens=*" %%b in ("$(CURDIR)") \
do Q@echo %%~sb)

.SUFFIXES: .ly .ily .pdf .mid

VPATH = \
$ (workdir)/Scores \
$ (workdir) /PDF \
$ (workdir) /Parts \
$ (workdir) /Notes

%.pdf %.mid: %.ly
$(LILY_CMD) $< # this line begins with a tab
if exist "$x.pdf" move /Y "$x.pdf" PDF/ # begin with tab
if exist "$*.mid" move /Y "$*.mid" MIDI/ # begin with tab

notes = \

cello.ily \
figures.ily \
horn.ily \
oboe.ily \
trioString.ily \
viola.ily \
violinOne.ily \
violinTwo.ily

$(piece)I.pdf: $(piece)I.ly $(notes)
$(piece)II.pdf: $(piece)IIl.ly $(notes)
$(piece)III.pdf: $(piece)III.ly $(notes)
$(piece)IV.pdf: $(piece)IV.ly $(notes)

$(piece) .pdf: $(piece).ly $(notes)

$(piece)-cello.pdf: $(piece)-cello.ly cello.ily
$(piece)-horn.pdf: $(piece)-horn.ly horn.ily
$(piece)-oboes.pdf: $(piece)-oboes.ly oboe.ily
$(piece)-viola.pdf: $(piece)-viola.ly viola.ily
$(piece)-violinOne.pdf: $(piece)-violinOne.ly violinOne.ily
$(piece)-violinTwo.pdf: $(piece)-violinTwo.ly violinTwo.ily

.PHONY: score
score: $(piece).pdf

.PHONY: parts

parts: $(piece)-cello.pdf \
$(piece)-violinOne.pdf \
$(piece)-violinTwo.pdf \
$(piece)-viola.pdf \
$(piece)-oboes.pdf \
$(piece)-horn.pdf

.PHONY: movements

Chapter 5: Suggestions for writing files 46

movements: $(piece)I.pdf \
$(piece)II.pdf \
$(piece)III.pdf \
$(piece)IV.pdf

all: score parts movements

The next Makefile is for a 1ilypond-book document done in LaTeX. This project has an
index, which requires that the latex command be run twice to update links. Output files are
all stored in the out directory for .pdf output and in the htmlout directory for the html output.

SHELL=/bin/sh

FILE=myproject

OUTDIR=out

WEBDIR=htmlout

VIEWER=acroread

BROWSER=firefox

LILYBOOK_PDF=lilypond-book --output=$(0UTDIR) --pdf $(FILE).lytex
LILYBOOK_HTML=1ilypond-book --output=$(WEBDIR) $(FILE).lytex
PDF=cd $(OUTDIR) && pdflatex $(FILE)

HTML=cd $(WEBDIR) && latex2html $(FILE)

INDEX=cd $(OUTDIR) && makeindex $(FILE)

PREVIEW=$ (VIEWER) $(OUTDIR)/$(FILE).pdf &

all: pdf web keep

pdf:

$(LILYBOOK_PDF) # begin with tab

$ (PDF) # begin with tab

$ (INDEX) # begin with tab

$ (PDF) # begin with tab

$ (PREVIEW) # begin with tab
web:

$ (LILYBOOK_HTML) # begin with tab

$ (HTML) # begin with tab

cp -R $(WEBDIR)/$(FILE)/ ./ # begin with tab

$ (BROWSER) $(FILE)/$(FILE).html & # begin with tab
keep: pdf

cp $(OUTDIR)/$(FILE) .pdf $(FILE).pdf # begin with tab
clean:

rm -rf $(OUTDIR) # begin with tab

web-clean:
rm -rf $(WEBDIR) # begin with tab

archive:
tar -cvvf myproject.tar \ # begin this line with tab
--exclude=out/* \
--exclude=htmlout/* \
--exclude=myproject/* \

Chapter 5: Suggestions for writing files 47

--exclude=*midi \
--exclude=+*pdf \
——exclude=*"~ \
../MyProject/*

TODO: make this thing work on Windows

The previous makefile does not work on Windows. An alternative for Windows users would
be to create a simple batch file containing the build commands. This will not keep track of
dependencies the way a makefile does, but it at least reduces the build process to a single
command. Save the following code as build.bat or build.cmd. The batch file can be run at
the DOS prompt or by simply double-clicking its icon.
lilypond-book --output=out --pdf myproject.lytex
cd out
pdflatex myproject
makeindex myproject
pdflatex myproject
cd ..
copy out\myproject.pdf MyProject.pdf

See also

This manual: Section 1.2 [Command-line usage], page 1, Chapter 3 [lilypond-book]|, page 14

Appendix A: GNU Free Documentation License 48

Appendix A GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright (©) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful
document free in the sense of freedom: to assure everyone the effective freedom to copy
and redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public License,
which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or whether it is published
as a printed book. We recommend this License principally for works whose purpose is
instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this License.
Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The “Document”, below, refers to any such manual
or work. Any member of the public is a licensee, and is addressed as “you”. You accept
the license if you copy, modify or distribute the work in a way requiring permission under
copyright law.

A “Modified Version” of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another
language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that could
fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero Invariant Sections.
If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License.
A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25
words.

http://fsf.org/

Appendix A: GNU Free Documentation License 49

A “Transparent” copy of the Document means a machine-readable copy, represented in a
format whose specification is available to the general public, that is suitable for revising
the document straightforwardly with generic text editors or (for images composed of pixels)
generic paint programs or (for drawings) some widely available drawing editor, and that is
suitable for input to text formatters or for automatic translation to a variety of formats
suitable for input to text formatters. A copy made in an otherwise Transparent file format
whose markup, or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent if used for
any substantial amount of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain Ascil without markup,
Texinfo input format, LaTEX input format, SGML or XML using a publicly available DTD,
and standard-conforming simple HTML, PostScript or PDF designed for human modifica-
tion. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only by proprietary word proces-
sors, SGML or XML for which the DTD and/or processing tools are not generally available,
and the machine-generated HTML, PostScript or PDF produced by some word processors
for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages
as are needed to hold, legibly, the material this License requires to appear in the title page.
For works in formats which do not have any title page as such, “Title Page” means the
text near the most prominent appearance of the work’s title, preceding the beginning of the
body of the text.

The “publisher” means any person or entity that distributes copies of the Document to the
public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve the
Title” of such a section when you modify the Document means that it remains a section
“Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to be
included by reference in this License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has no effect on the
meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncom-
mercially, provided that this License, the copyright notices, and the license notice saying
this License applies to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License. You may not use technical measures
to obstruct or control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you distribute a large
enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.
3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document’s license notice requires Cover
Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both

Appendix A: GNU Free Documentation License 50

covers must also clearly and legibly identify you as the publisher of these copies. The front
cover must present the full title with all words of the title equally prominent and visible.
You may add other material on the covers in addition. Copying with changes limited to
the covers, as long as they preserve the title of the Document and satisfy these conditions,
can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the
first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto
adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy,
or state in or with each Opaque copy a computer-network location from which the general
network-using public has access to download using public-standard network protocols a
complete Transparent copy of the Document, free of added material. If you use the latter
option, you must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque copy
(directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an
updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it. In
addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any, be
listed in the History section of the Document). You may use the same title as a previous
version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of
the principal authors of the Document (all of its principal authors, if it has fewer than
five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copy-
right notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.
H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating
at least the title, year, new authors, and publisher of the Modified Version as given
on the Title Page. If there is no section Entitled “History” in the Document, create
one stating the title, year, authors, and publisher of the Document as given on its

Appendix A: GNU Free Documentation License 51

Title Page, then add an item describing the Modified Version as stated in the previous
sentence.

J. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the “History”
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to
gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in
the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title
with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to
the list of Invariant Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorse-
ments of your Modified Version by various parties—for example, statements of peer review
or that the text has been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you may replace the
old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to
use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its license notice, and that you
preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license notice of the combined work.

Appendix A: GNU Free Documentation License 52

In the combination, you must combine any sections Entitled “History” in the various original
documents, forming one section Entitled “History”; likewise combine any sections Entitled
“Acknowledgements”, and any sections Entitled “Dedications”. You must delete all sections
Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with
a single copy that is included in the collection, provided that you follow the rules of this
License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document,
and follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the copyright resulting from the compilation is not used to limit the legal
rights of the compilation’s users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works in
the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but you may include translations
of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the license notices in
the Document, and any Warranty Disclaimers, provided that you also include the original
English version of this License and the original versions of those notices and disclaimers. In
case of a disagreement between the translation and the original version of this License or a
notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”,
the requirement (section 4) to Preserve its Title (section 1) will typically require changing
the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly pro-
vided under this License. Any attempt otherwise to copy, modify, sublicense, or distribute
it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular copy-
right holder is reinstated (a) provisionally, unless and until the copyright holder explicitly
and finally terminates your license, and (b) permanently, if the copyright holder fails to
notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the
copyright holder notifies you of the violation by some reasonable means, this is the first
time you have received notice of violation of this License (for any work) from that copyright
holder, and you cure the violation prior to 30 days after your receipt of the notice.

Appendix A: GNU Free Documentation License 53

10.

11.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have been
terminated and not permanently reinstated, receipt of a copy of some or all of the same
material does not give you any rights to use it.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Doc-
umentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns. See
http://wuw.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version” applies
to it, you have the option of following the terms and conditions either of that specified
version or of any later version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation. If the
Document specifies that a proxy can decide which future versions of this License can be
used, that proxy’s public statement of acceptance of a version permanently authorizes you
to choose that version for the Document.

RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide Web
server that publishes copyrightable works and also provides prominent facilities for anybody
to edit those works. A public wiki that anybody can edit is an example of such a server. A
“Massive Multiauthor Collaboration” (or “MMC”) contained in the site means any set of
copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published
by Creative Commons Corporation, a not-for-profit corporation with a principal place of
business in San Francisco, California, as well as future copyleft versions of that license
published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part of
another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works that
were first published under this License somewhere other than this MMC, and subsequently
incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections,
and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-
SA on the same site at any time before August 1, 2009, provided the MMC is eligible for
relicensing.

http://www.gnu.org/copyleft/

Appendix A: GNU Free Documentation License 54

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document
and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ~“GNU

Free Documentation License''.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the

“with. .. Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU General
Public License, to permit their use in free software.

Appendix B: LilyPond index

95

Appendix B: LilyPond index

Appendix B LilyPond index

\

C

call trace.o 7
Coda Technology ...t 36
coloring, Syntaxc.ueeiiiiiiiiinennn 33
command line options for 1ilypond................ 2
convert-lyo 11

D

docbook ... 14
DocBook, musicin...................iii 14
documents, adding music to................ 14
AVIPS 24

E

editors. ... 33
CIMACS .+« vttt et e 33
ENIGINA. vttt 36
EPS (Encapsulated PostScript).................... 3
EITOT « o vttt ettt 7
EITOL TNESSAZES .« « ¢ v vv e vttt et aee e 7
errors, message formato oL 7
ETF . 36
External programs, generating LilyPond files 37

F

fatal error...... ... 7
file searching o i 3
file size, output oo 32
Finale 36
folder, directing output to............ 4

H

help, command line 2
html ... 14
HTML, music in ...t 14

I

invoking dvips ..o 24
Invoking lilypondl 2

LANG .. 5
latex . ..o 14
IATEX, music in.........ooiiiiiiiii i 14
LILYPOND_DATADIR ...t 5

56
M
make 41
makefiles.o 41
Manuals........ooiiiiiiiiiiiiiiiii i 1
MIDI .. 33
modes, editor i 33
MUSICOlOZY .« v v 14
MusicXML. ... 35
O
OpenOffice.org. ...t 37
options, command line, 2
outline fonts i 24
output filename, setting 4
output format, setting............. oL 3
P
paper-size, command line.......................... 2
point and click........... .. i 32
point and click, command line..................... 2
Portable Document Format (PDF) output......... 4
Portable Network Graphics (PNG) output......... 4
PostScript output........ ... 3,4
Postscript, encapsulated............. o 3
preview image ..o 20
preview, command line............................ 3
Programming error.............. ..o oo 7
S
safe, command line...............o 2
Scheme dump ...t 3
Scheme error........ ..o 7
search path o 3
SVG (Scalable Vector Graphics)................... 3
switches. ... 2
syntax coloring............ o oL 33
T
L7155« 14
texinfo. 14
Texinfo, music in.............. ..., 14
thumbnail 20
titling and lilypond-book............ 18
titling in HTML 20
trace, Scheme i 7
typel fonts...... .o 24
U
Updating a LilyPond file......................... 11
updating old input files oo 11
\%
74 00 33

	Running lilypond
	Normal usage
	Command-line usage
	Invoking lilypond
	Standard shell commands

	Command line options for lilypond
	Environment variables
	LilyPond in chroot jail

	Error messages
	Common errors
	Music runs off the page
	An extra staff appears
	Apparent error in ../ly/init.ly
	Error message Unbound variable %
	Error message FT_Get_Glyph_Name
	Warning staff affinities should only decrease

	Updating files with convert-ly
	Why does the syntax change?
	Invoking convert-ly
	Command line options for convert-ly
	Problems running convert-ly
	Manual conversions

	Running lilypond-book
	An example of a musicological document
	Integrating music and text
	LaTeX{}
	Texinfo
	HTML
	DocBook

	Music fragment options
	Invoking lilypond-book
	Filename extensions
	lilypond-book templates
	LaTeX
	Texinfo
	html
	xelatex

	Sharing the table of contents
	Alternative methods of mixing text and music

	External programs
	Point and click
	Text editor support
	Emacs mode
	Vim mode

	Other editors
	Converting from other formats
	Invoking midi2ly
	Invoking musicxml2ly
	Invoking abc2ly
	Invoking etf2ly
	Other formats

	LilyPond output in other programs
	Many quotes from a large score
	Inserting LilyPond output into OpenOffice.org
	Inserting LilyPond output into other programs

	Independent includes
	MIDI articulation

	Suggestions for writing files
	General suggestions
	Typesetting existing music
	Large projects
	Troubleshooting
	Make and Makefiles

	GNU Free Documentation License
	LilyPond index

