LilyPond

The music typesetter

Contributor’s Guide

The LilyPond development team

()
This manual documents contributing to LilyPond version 2.14.1. It discusses technical issues

and policies that contributors should follow.

This manual is not intended to be read sequentially; new contributors should only read the
sections which are relevant to them. For more information about different jobs, see Section

“Help us” in General Information.
N J

For more information about how this manual fits with the other documentation, or to read this
manual in other formats, see Section “Manuals” in General Information.

If you are missing any manuals, the complete documentation can be found at
http://www.lilypond.org/.

Copyright (© 2007-2011 by the authors.

Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.1 or any later version
published by the Free Software Foundation; with no Invariant Sections. A copy of
the license is included in the section entitled “GNU Free Documentation License”.

For LilyPond version 2.14.1

http://www.lilypond.org/

Table of Contents

1 Introduction to contributing............... 1
1.1 HelD TS e e 1
1.2 Overview of work flow 2
1.3 MENbOTS . . vttt ettt e 3

2 Quick start....... 5
2.1 LAlydev. .o 5

2.1.1 Installing Llydev.o 5
2.1.2 Configuring lilydev in virtualbox......... i i 6
2.1.3 Using Hlydev e 6
2.2 Using HLy-git . . oot 6
Install and configuration of 1ily-git.tcl i 7
Daily use of 1ily-git.tclo 7
2.3 Compiling with lilydev 8
2.4 Now start WorK! 9

3 Working with sourcecode................................... 11
3.1 Manually installing lily-git.tcl. 11
3.2 Starting with Git. ... e 11

321 Setting UD . v v oot 12
Installing Git. 12
Initializing a repository e 12
Configuring Gito e e 12

3.2.2 Downloading remote branches i 13
Organization of remote branches......... 13
LilyPond repository SOUTCESttt et 13
Downloading individual branches i i 14
Downloading all remote branches........ i 15
Other branches. 15

3.3 Basic Git PrOCEdUTESottt et e e 15

3.3.1 The Git contributor’s cycle 15

3.3.2 Pulling and rebasing. ... 15

3.3.3 Using local branches. 16
Creating and removing branches......... ... 16
Listing branches and remotes. i e 17
Checking out branches i 17
Merging branches 17

3.3.4 Commits and patches. 17
Understanding commitsooii i e 17
Making COmIMIts 18
COmMMIt MESSAZES - .+« e e vttt et ettt ettt e 18
Making patches 19
Uploading a patch for review i e 19

3.4 Advanced Git ProCeduresttt e 21
3.4.1 Advanced Git CONCEPES . .ottt ettt et 21
3.4.2 Resolving conflicts. 22

3.4.3 Reverting all local changes...... i 22

3.4.4 Working with remote branches......... 22
345 GIt LOg . oo 23
3.4.6 Applying remote patches ... 23
3.4.7 Sending and receiving patches via email......... i, 23
3.4.8 Cleaning up multiple patches 24
3.4.9 COMINIT ACCESS « vt vttt ettt e e e e e et e et et e e e 24
3.5 Git 0N WINAOWS . . .t ettt ettt e 27
3.5.1 Background to nomenclature........... ... 27
3.5.2 Imstalling gitot e 27
3.5.3 Imitialising Git. e 27
3.5.4 Git GUIL. o 28
3.5.5 Personalising your local git repository.............. i 28
3.5.6 Checking out a branch...... 29
3.5.7 Updating files from ‘remote/origin/master’..........., 29
3.5.8 Editing files 29
3.5.9 Sending changes to ‘remotes/origin/master’.............. o 30
3.5.10 Resolving merge conflicts. ... 30
3.5. 11 Other actions 30
3.6 Repository directory structure. 31
3.7 Other Git documentation.o e 33
4 Compiling. 34
4.1 Overview of compiling....... ..o i 34
4.2 ReqUITEMENTS . . . oottt et et e 34
4.2.1 Requirements for running LilyPond 34
4.2.2 Requirements for compiling LilyPond o 34
4.2.3 Requirements for building documentation.................. 35
4.3 Getting the SoUrce codeo 36
4.4 Configuring MaKettt ettt e e e e 36
4.4.1 Running ./autogen.sh........c..oinutittiitii e 36
4.4.2 Running ../configure....... ...t 37
Configuration OptionSttt 37
Checking build dependencies 37
Configuring target directories.t e 37

4.5 Compiling LilyPond 38
4.5.1 USINg MaKe . o e 38
4.5.2 Saving time with the ‘=j option........ 38
4.5.3 Compiling for multiple platforms.......... 38
4.5.4 Useful make variables 39
4.6 Post-compilation options e 39
4.6.1 Installing LilyPond from a local build...........o i 39
4.6.2 Generating documentation e 39
Documentation editor’s edit/compile cycle........ ... i 39
Building documentation 39
Saving time with CPU_COUNTttt ettt e e e 40
AJAX SEATCh . .o o 40
Installing documentationo i i 41
Building documentation without compiling L 41

4.6.3 Testing LilyPond binaryo 42
4.7 Problems. 42
Bison 1,875 . 42
Compiling on MacOS X ... 42
SOLATIS .« .« ettt 43

FreeB S D .o 43

International fonts. ... 43
Using lilypond python librarieso 44

4.8 Concurrent stable and development versions 44
4.9 Build system e 44
Documentation work............ L. 45
5.1 Introduction to documentation work........... i 45
5.2 Documentation SUZEEStIONSttt 45
5.3 Texinfo introduction and usage PoliCy.ot 46
5.3.1 Texinfo introduction. i 46
5.3.2 Documentation files ... 47
5.3.3 Sectioning commandsS.untin 47
5.3.4 LilyPond formatting.......... ..o i 48
5.3.5 Text formattingo i 50
5.3.6 SYNEAX SUTVEY . vttt ettt ettt et et e e e e et 50
COMIMENES . . o oottt e e e e 50

CroSS TEETEICES . . . oottt e e e 50
External links e 51
Fixed-width font 51
Indexing . ..o 52

LSS e e e 52
Special characters i 53
MISCEILAILY . . v o ettt o3

5.3.7 Other text CONCEINSt e 54
5.4 Documentation poliCy e 54
D.4. 1 BOOKS . oo 54
5.4.2 Section Organizationu.urtt ettt et et e 55
5.4.3 Checking cross-references 56
5.4.4 General Writing.t e 56
5.4.5 Technical writing style....... ... 57
5.5 Tips for writing docst o7
5.6 Scripts to ease doC WOTKt 58
5.7 Docstrings in scheme 59
5.8 Translating the documentation i 59
5.8.1 Getting started with documentation translation.............................. 59
Translation reqUIrements 60
Which documentation can be translated 60
Starting translation in a new language........ i i 60

5.8.2 Documentation translation details 60
Files to be translated i 61
Translating the Web site and other Texinfo documentation....................... 62
Adding a Texinfo manual......... ... 64

5.8.3 Documentation translation maintenance i, 65
Check state of translation i 65
Updating documentation translation........... i 65
Updating translation committishes......... i i 66

5.8.4 Translations management policies......... ..., 67
Maintaining without updating translations............. L. 67
Managing documentation translation with Git................................... 69

5.8.5 Technical background.......... ... i 69

6 Website work 71
6.1 Introduction to website Work 71
6.2 Uploading and SECUTTLY ouutt it e 71
6.3 Debugging website and docs locally........ ... i 73
6.4 Translating the website. i 73

7 LSR work ... 74
7.1 Introduction to LSR. ... e 74
7.2 Adding and editing SNIPPELSttt 74
7.3 ADPDProving SIIPPEtS. . ..ottt 75
Td LSRR 10 Gttt e 75
7.5 Fixing snippets in LilyPond sources......... ... 75
7.6 Renaming a Snippeto e 76
7.7 Updating LSR t0 & NewW VEersion.oiiuiin e 76

B ISSUES. .. 78
8.1 Introduction t0 ISSUESttt e 78
8.2 Bug Squad SEtUD « . vt ettt 78
8.3 Bug Squad checklists 79
8.4 Issue classification e 81
8.5 Adding issues to the tracker 83
8.6 Patch handling e 83
8.7 Summary of project statuilso 84

9 Regression tests........ 86
9.1 Introduction to regression teStS 86
9.2 Precompiled regression tests 86
9.3 Compiling regression tests e 87
9.4 Regtest COmPAariSon. e 87
9.5 Finding the cause of a regression. 88
9.6 Memory and coverage testSt 89
9.7 MuUsicX ML B8t . . oot e 90

10 Programming work 91
10.1 Overview of LilyPond architecture............ 91
10.2 LilyPond programming languages.ouuuutimitemi i 93

10,2, b et 93
10.2.2 FleX. oot 93
10.2.3 GINU BiSOM. . oottt e 93
10.2.4 GINU MakKe. ..ottt e e e 93
10.2.5 GUILE or Scheme.o e e 93
10.2.6 MetaFont e 93
10.2.7 PostSCript. o et 93
10.2.8 Pythom. ..o 93
10.3 Programming without compiling.......... ..o i 93
10.3.1 Modifying distribution files......... ... 94
10.3.2 Desired file formatting. ... 94
10.4 Finding functions 94
10.4.1 Using the ROADMARP e 94
10.4.2 Using grep t0 Search.o e 94
10.4.3 Using git grep tosearch 95

10.4.4 Searching on the git repository at Savannah.............. 95

10.5 Code SEYLE vttt e 95
10.5.1 LangUAZES . . oottt et 95
10.5.2 Filenamesottt 95
10.5.3 Indentation. e 95
10.5.4 Naming Conventionsuuueeitt i 97
10.5.5 BroKen Code. 98
10.5.6 Code COMMENTS - . .ottt ettt e et e e e e e et et e 98
10.5.7 Handling errors.ttt 98
10.5.8 Localizationottt e 98

10.6 Debugging LilyPond e 100
10.6.1 Debugging OVErVIEWottt e 100
10.6.2 Debugging CH-+ Codeot 100
10.6.3 Debugging Scheme codeooiuiiiii 101

10.7 Tracing object relationships i 103

10.8 Adding or modifying features.......o 104
10.8.1 Write the code 104
10.8.2 Write regression tests. 104
10.8.3 Write convert-ly rule 105
10.8.4 Automatically update documentation............... 105
10.8.5 Manually update documentation.............. .. i i 105
10.8.6 Edit changes.tely 106
10.8.7 Verify successful build 106
10.8.8 Verify regression tests 106
10.8.9 Post patch for comments 107
10.8.10 Push patch. 107
10.8.11 Closing the ISSUESo vttt e 107

10.9 Tterator tutorial. 107

10.10 Engraver tutorial 107
10.10.1 Useful methods for information processing............... ..., 107
10.10.2 Translation ProCeSS.ttt ettt e 108
10.10.3 Preventing garbage collection for SCM member variables.................. 108
10.10.4 Listening to musiC €Vents.oiiii i 108
10.10.5 Acknowledging grobsot 108
10.10.6 Engraver declaration/documentation ool 109

10.11 Callback tutorial. 109

10.12 LilyPond SCOPING. . ..ottt 109

10.13 LilyPond miscellany e 110
10.13.1 Spacing algorithms i 110
10.13.2 Info from Han-Wen email 0 . i 110
10.13.3 Music functions and GUILE debuggingt 114

11 Release work 115

11.1 Development phases.o e 115

11.2 Minor release checklist 115

11.3 Major release checklist 116

11.4 Release extra notes. 118

12 Build system notes 120
12.1 Build System OvVerview 120
12.2 Tips for working on the build system o i 120
12.3 General build system notes. ... 120

12.3.1 How stepmake WOTKS e 121
124 Doc buildooo e 124
12.4.1 Building a bibliographyo 124
12.5 Website build 125
12.6 Building an Ubuntu distroo 127

13 Administrative policies................ L. 128
13.1 Meta-policy for this document........ i i 128
13,2 MeISterS o o oottt 128
13.3 Administrative mailing list 129
13.4 Grand Organization Project (GOP) i 129

13.4.1 Motivationo vttt e 129
13.4.2 Ongoing JODSt 130
13.4.3 Policy decisionsouinn 130
13.5 Grand LilyPond Input Syntax Standardization (GLISS)......................... 133
13.5.1 Specific GLISS 188UES . . . vttt ittt e 134
13.6 Unsorted PoliCIes.ttt 136

Appendix A GNU Free Documentation License 138

Chapter 1: Introduction to contributing 1

1 Introduction to contributing

This chapter presents a quick overview of ways that people can help LilyPond.

1.1 Help us

We need you!

The LilyPond development team is quite small; we really want to get more people involved.
Please consider helping your fellow LilyPond users by contributing!

Even working on small tasks can have a big impact: taking care of them allows experienced
developers work on advanced tasks, instead of spending time on those simple tasks.

Simple tasks
No source code or compiling required!
e Mailing list support: answer questions from fellow users.

e Bug reporting: help users create proper Section “Bug reports” in General Information,
and/or join the Bug Squad to organize Section “Issues” in Contributor’s Guide.

e Documentation: small changes can be proposed by following the guidelines for Section
“Documentation suggestions” in Contributor’s Guide.

e LilyPond Snippet Repository (LSR): create and fix snippets following the guidelines in
Section “Adding and editing snippets” in Contributor’s Guide.

e Discussions, reviews, and testing: the developers often ask for feedback about new docu-
mentation, potential syntax changes, and testing new features. Please contribute to these
discussions!

Advanced tasks

These jobs generally require that you have the source code and can compile LilyPond.

Note: We suggest that contributors using Windows or MacOS X do
not attempt to set up their own development environment; instead, use
Lilydev as discussed in Section “Quick start” in Contributor’s Guide.

Contributors using Linux or FreeBSD may also use Lilydev, but if they prefer their own
development environment, they should read Section “Working with source code” in Contributor’s
Guide, and Section “Compiling” in Contributor’s Guide.

e Documentation: for large changes, see Section “Documentation work” in Contributor’s
Guide.

o Website: the website is built from the normal documentation source. See the info about
documentation, and also Section “Website work” in Contributor’s Guide.

e Translations: see Section “Translating the documentation” in Contributor’s Guide, and
Section “Translating the website” in Contributor’s Guide.

e Bugfixes or new features: the best way to begin is to join the Frogs, and read Section
“Programming work” in Contributor’s Guide.

Projects

Chapter 1: Introduction to contributing 2

Frogs
Website and mailing list:
http://frogs.lilynet.net

The Frogs are ordinary LilyPond users who have chosen to get involved in their favorite
software’s development. Fixing bugs, implementing new features, documenting the source code:
there’s a lot to be done, but most importantly: this is a chance for everyone to learn more about
LilyPond, about Free Software, about programming... and to have fun. If you're curious about
any of it, then the word is: Join the Frogs!

Grand LilyPond Input Syntax Standardization

Website: Section “Grand LilyPond Input Syntax Standardization (GLISS)” in Contributor’s
Guide.

GLISS will stabilize the (non-tweak) input syntax for the upcoming LilyPond 3.0. After
updating to 3.0, the input syntax for untweaked music will remain stable for the foreseeable
future.

We will have an extensive discussion period to determine the final input specification.

[Note: GLISS will start shortly after 2.14 is released. j

Grand Organizing Project
Website: Section “Grand Organization Project (GOP)” in Contributor’s Guide.

GOP will be our big recruiting drive for new contributors. We desperately need to spread the
development duties (including “simple tasks” which require no programming or interaction with
source code!) over more people. We also need to document knowledge from existing developers
so that it does not get lost.

Unlike most “Grand Projects”, GOP is not about adding huge new features or completely
redesigning things. Rather, it is aimed at giving us a much more stable foundation so that we
can move ahead with larger tasks in the future.

[Note: GOP will start shortly after the 2.14 release. j

1.2 Overview of work flow

Ultra-short summary for Unix developers: source codeisat git://git.sv.gnu.org/lilypond.git.}j
Documentation is built with Texinfo, after pre-processing with l1ilypond-book. Send well-
formed patches to 1ilypond-devel@gnu.org.

Git is a wersion control system that tracks the history of a program’s source code. The
LilyPond source code is maintained as a Git repository, which contains:
e all of the source files needed to build LilyPond, and

e arecord of the entire history of every change made to every file since the program was born.

The ‘official’ LilyPond Git repository is hosted by the GNU Savannah software forge at
http://git.sv.gnu.org. Although, since Git uses a distributed model, technically there is

no central repository. Instead, each contributor keeps a complete copy of the entire repository
(about 116M).

Changes made within one contributor’s copy of the repository can be shared with other
contributors using patches. A patch is a simple text file generated by the git program that

http://frogs.lilynet.net
mailto:lilypond-devel@gnu.org
http://git.sv.gnu.org

Chapter 1: Introduction to contributing 3

indicates what changes have been made (using a special format). If a contributor’s patch is
approved for inclusion (usually through the mailing list), someone on the current development
team will push the patch to the official repository.

The Savannah software forge provides two separate interfaces for viewing the LilyPond Git
repository online: cgit and gitweb. The cgit interface should work faster than gitweb in most
situations, but only gitweb allows you to search through the source code using grep, which you
may find useful. The cgit interface is at http://git.sv.gnu.org/cgit/lilypond.git/ and
the gitweb interface is at http://git.sv.gnu.org/gitweb/7p=1lilypond.git.

Git is a complex and powerful tool, but tends to be confusing at first, particularly for users not
familiar with the command line and/or version control systems. We have created the 1ily-git
graphical user interface to ease this difficulty.

Compiling (‘building’) LilyPond allows developers to see how changes to the source code
affect the program itself. Compiling is also needed to package the program for specific operating
systems or distributions. LilyPond can be compiled from a local Git repository (for developers),
or from a downloaded tarball (for packagers). Compiling LilyPond is a rather involved process,
and most contributor tasks do not require it.

Contributors can contact the developers through the ‘lilypond-devel’ mailing list. The mailing
list archive is located at http://lists.gnu.org/archive/html/1lilypond-devel/. If you have
a question for the developers, search the archives first to see if the issue has already been
discussed. Otherwise, send an email to 1ilypond-devel@gnu.org. You can subscribe to the
developers’ mailing list here: http://lists.gnu.org/mailman/listinfo/lilypond-devel.

Note: Contributors on Windows or MacOS X wishing to compile code
or documentation are strongly advised to use our Ubuntu LilyPond
Developer Remix, as discussed in Chapter 2 [Quick start], page 5.

1.3 Mentors

We have a semi-formal system of mentorship, similar to the medieval “journeyman/master”
training system. New contributors will have a dedicated mentor to help them “learn the ropes”.

Note: This is subject to the availability of mentors; certain jobs have
more potential mentors than others.

Contributor responsibilities

1. Ask your mentor which sections of the CG you should read.

2. If you get stuck for longer than 10 minutes, ask your mentor. They might not be able to help
you with all problems, but we find that new contributors often get stuck with something
that could be solved/explained with 2 or 3 sentences from a mentor.

3. If you have been working on a task much longer than was originally estimated, stop and ask
your mentor. There may have been a miscommunication, or there may be some time-saving
tips that could vastly simply your task.

4. Send patches to your mentor for initial comments.

5. Inform your mentor if you're going to be away for a month, or if you leave entirely. Con-
tributing to lilypond isn’t for everybody; just let your mentor know so that we can reassign
that work to somebody else.

6. Inform your mentor if you're willing to do more work — we always have way more work

than we have helpers available. We try to avoid overwhelming new contributors, so you’ll
be given less work than we think you can handle.

http://git.sv.gnu.org/cgit/lilypond.git/
http://git.sv.gnu.org/gitweb/?p=lilypond.git
http://lists.gnu.org/archive/html/lilypond-devel/
mailto:lilypond-devel@gnu.org
http://lists.gnu.org/mailman/listinfo/lilypond-devel

Chapter 1: Introduction to contributing 4

Mentor responsibilities

1.

Respond to questions from your contributor(s) promptly, even if the response is just “sorry,
I don’t know” or “sorry, I'm very busy for the next 3 days; I'll get back to you then”. Make
sure they feel valued.

Inform your contributor(s) about the expected turnaround for your emails — do you work
on lilypond every day, or every weekend, or what? Also, if you’ll be unavailable for longer
than usual (say, if you normally reply within 24 hours, but you’ll be at a conference for a
week), let your contributors know. Again, make sure they feel valued, and that your silence
(if they ask a question during that period) isn’t their fault.

Inform your contributor(s) if they need to do anything unusual for the builds, such as doing
a “make clean / doc-clean” or switching git branches (not expected, but just in case...)

You don’t need to be able to completely approve patches. Make sure the patch meets
whatever you know of the guidelines (for doc style, code indentation, whatever), and then
send it on to the frog list or -devel for more comments. If you feel confident about the patch,
you can push it directly (this is mainly intended for docs and translations; code patches
should almost always go to -devel before being pushed).

Keep track of patches from your contributor. If you've sent a patch to -devel, it’s your
responsibility to pester people to get comments for it, or at very least add it to the google
tracker.

Chapter 2: Quick start 5

2 Quick start

Want to submit a patch for LilyPond? Great! This chapter is designed to let you do this as
quickly and easily as possible.

It is not possible to compile LilyPond on Windows, and extremely difficulty to compile it on
MacOS X. We have therefore made a ‘remix’ of Ubuntu which includes all necessary dependencies
to compile both LilyPond and the documentation. This can be run inside a virtual machine
without disturbing your main operating system. The full name is “Ubuntu LilyPond Developer
Remix”, but we refer to it as “lilydev” for short.

Advanced note: experienced developers may prefer to use their own development
environment. It may be instructive to skim over these instructions, but be aware
that this chapter is intended for helpful users who may have never created a patch
before.

2.1 Lilydev

This section discusses how to install and use the Ubuntu LilyPond Development Remix.

2.1.1 Installing lilydev

1. Install some virtualization software.
Any virtualization tool can be used, but we recommend VirtualBox:
http://www.virtualbox.org/wiki/Downloads
In virtualization terminology, your main operating system is the “host”, while lilydev is the
“guest”.
2. Download the Ubuntu LilyPond Developer Remix disk image: (approximately 1 GB)
http://files.lilynet.net/ubuntu-lilydev-remix-1.1.iso

Advanced note: Some users might want these files, but if you don’t recognize
what they are, then you don’t want them:
http://files.lilynet.net/ubuntu-lilydev-remix-1.1.iso.md5

3. Create a music new “virtual machine” inside your virtualization software.

If possible, use at least 700 MB of RAM (1GB would be better) for the virtual machine,
and use “dynamically expanding storage” for the virtual hard drive. A complete compile
of everything (code, docs, regression tests) can reach 10 GB.

4. Install ‘ubuntu-lilydev-remix-1.1.iso’ as the “guest” operating system on your virtu-
alized system.
1. When ‘ubuntu-lilydev-remix-1.1.iso’ boots, it shows an ISOLINUX boot:
prompt. Type:
install
2. At the “Prepare disk space” stage, do not be afraid to select “Erase and use the entire
disk”, since this refers to your virtual disk, not your machine’s actual hard drive.

3. When prompted to remove the installation CD, go to Devices — CD/DVD Devices
and de-select ‘ubuntu-lilydev-remix-1.1.iso’.

Advanced note: The latest version of lilydev is based on Ubuntu 10.04.1; if you
encounter any difficulties installing it, search for one of the many tutorials for
installing that particular version of Ubuntu as a guest operating system.

5. Do any extra configuration for your virtualization software.

There are additional instructions for VirtualBox in Section 2.1.2 [Configuring lilydev in
virtualbox], page 6.

http://www.virtualbox.org/wiki/Downloads
http://files.lilynet.net/ubuntu-lilydev-remix-1.1.iso
http://files.lilynet.net/ubuntu-lilydev-remix-1.1.iso.md5

Chapter 2: Quick start 6

If you use other virtualization software, then follow the normal procedures for your virtu-
alization software with Ubuntu as the client.

Known issues and warnings

Not all hardware is supported in all virtualization tools. In particular, some contributors have
reported problems with USB devices. If you would like to investigate further, then look for help
for your virtualization tool using your normal OS as the “host” and Ubuntu as the “client”.

2.1.2 Configuring lilydev in virtualbox
VirtualBox has extra “guest additions” which can make the virtualization easier to use (full-
screen, easy file sharing between host and guest operating systems, shared clipboards, etc).

1. In VirtualBoz, select Devices — Install Guest Additions....

2. In Ubuntu, select Places = VBOXADDITIONS_. A file-system window will open.

3. Double-click on the ‘autorun.sh’ file, then select “Run in Terminal”, and enter your pass-
word when prompted.

4. Once the script is finished, “eject” the virtual CD, and then go to Devices - CD/DVD
Devices and de-select ‘VBoxGuestAdditions.iso’.

5. Restart Ubuntu to complete the installation.
Advanced note: If you do any kernel upgrades, you may need to re-run these
VBOXADDITIONS instructions.
Some other steps may be helpful:

e In the settings for the virtual machine, set the network to Bridged mode to allow you to
access shared folders on your Windows host.

e Set up any additional features, such as ‘Shared Folders’ between your main operating system
and ubuntu. This is distinct from the networked share folders in Windows. Consult external
documentation for this step.

Some longtime contributors have reported that ‘shared folders’ are rarely useful and not
worth the fuss, particularly since files can be shared over a network instead.

2.1.3 Using lilydev
If you are not familiar with Linux, it may be beneficial to read a couple of “introduction to
Ubuntu” webpages.

e One particular change from Windows and MacOS X is that most software should be installed
with your “package manager”; this vastly simplifies the process of installing and configuring
software. Go to Applications — Ubuntu Software Center.

e The rest of this manual assumes that you are using the command-line; double-click on the
‘Terminal’ icon on the desktop.

e Pasting into a terminal is done with Ctr1+Shift+v.

e The “Places” top-menu has shortcuts to a graphical “navigator” like Windows Explorer or
the MacOS X Finder.

e Right-click allows you to edit a file with gedit. We recommend using gedit.
e Some contributors have recommended: (pdf available for free)

http://www.ubuntupocketguide.com/

2.2 Using lily-git

lily-git.tcl is a graphical tool to help you access and share changes to the lilypond source
code.

http://www.ubuntupocketguide.com/

Chapter 2: Quick start 7

Install and configuration of 1ily-git.tcl

Note: The rest of this manual assumes that you are using the command-
line; double-click on the ‘Terminal’ icon on the desktop.

1. Type (or copy&paste) into the Terminal:
lily-git.tcl
2. Click on the “Get source” button.

This will create a directory called ‘1lilypond-git/’ within your home directory, and will
download the source code into that directory (around 55Mb). When the process is finished,
the “Command output” window will display “Done”, and the button label will change to
say “Update source”.

Note: Some contributors have reported that nothing happens at
this step. If this occurs, then try again in a few minutes — we sus-
pect that this is an intermittant network problem. If the problem
persists, please ask for help.

3. Navigate to the ‘1ilypond-git/’ directory to view the source files.

You should now progress to Section 2.3 [Compiling with lilydev], page 8.

Note: Throughout the rest of this manual, most command-line input
should be entered from ‘~/lilypond-git/’. This is referred to as the
top source directory.

Advanced note: the “Get source” button does not fetch the entire history of the git
repository, so utilities like gitk will only be able to display the most recent additions.
As you continue to work with 1ily-git.tcl, the “Update source” button will take
any new additions and add it to whatever is currently in your repository’s history.

Daily use of 1lily-git.tcl

Note: Only work on one set of changes at once. Do not start work on
any new changes until your first set has been accepted.

1. Update source

At the beginning of each session of lilypond work, you should click the “Update source” button
to get the latest changes to the source code.

Note: In some rare and unfortunate circumstances, this will result
in a merge conflict. If this occurs, follow the instructions for “Abort
changes”, below. Your work will not be lost.

2a. New local commit

A single commit typically represents one logical set of related changes (such as a bug-fix), and
may incorporate changes to multiple files at the same time.

Chapter 2: Quick start 8

When you’re finished making the changes for a commit, click the “New local commit” button.
This will open the “Git Commit Message” window. The message header is required, and the
message body is optional.

After entering a commit message, click “OK” to finalize the commit.

Advanced note: for more information regarding commits and commit messages, see
Section 3.3.4 [Commits and patches]|, page 17.

2b. Amend previous commit

You can go back and make changes to the most recent commit with the “Amend previous
commit” button. This is useful if a mistake is found after you have clicked the “New local
commit” button.

To amend the most recent commit, re-edit the source files as needed and then click the

“Amend previous commit” button. The earlier version of the commit is not saved, but is
replaced by the new one.

Note: This does not update the patch files; if you have a patch file from
an earlier version of the commit, you will need to make another patch
set when using this feature. The old patch file will not be saved, but
will be replaced by the new one after you click on “Make patch set”.

3. Make patch set

Before making a patch set from any commits, you should click the “Update source” button to
make sure the commits are based on the most recent remote snapshot.

When you click the “Make patch set” button, 1ily-git.tcl will produce patch files for any
new commits, saving them to the current directory. The command output will display the name
of the new patch files near the end of the output:

0001-CG-add-1ily-git-instructions.patch
Done.
Send patch files to the appropriate place:
e If you have a mentor, send it to them via email.

e New contributors should send the patch attached to an email to frogs@lilynet.net. Please
add “[PATCH]” to the subject line.

e Translators should send patches to translations@lilynet.net.

e More experienced contributors should upload the patch for web-based review. This requires
additional software and use of the command-line; see [Uploading a patch for review|, page 19.

The “Abort changes — Reset to origin” button

Note: Only use this if your local commit history gets hopelessly con-
fused!

The button labeled “Abort changes — Reset to origin” will copy all changed files to a subdirec-
tory of ‘lilypond-git/’ named ‘aborted_edits/’, and will reset the repository to the current
state of the remote repository (at git.sv.gnu.org).

2.3 Compiling with lilydev

Lilydev is our ‘remix’ of Ubuntu which contains all the necessary dependencies to do lilypond
development; for more information, see Section “Lilydev” in Contributor’s Guide.

mailto:frogs@lilynet.net
mailto:translations@lilynet.net

Chapter 2: Quick start 9

Preparing the build

To prepare the build directory, enter (or copy&paste) the below text. This should take less than
a minute.

cd “/lilypond-git/

sh autogen.sh --noconfigure
mkdir -p build/

cd build/

../configure

Building 1ilypond

Compiling lilypond will likely take between 5 and 60 minutes, depending on your computer’s
speed and available RAM. We recommend that you minimize the terminal window while it is
building; this can have a non-negligible effect on compilation speed.

cd ~/lilypond-git/build/
make

You may run the compiled 1ilypond with:
cd ~/lilypond-git/build/
out/bin/lilypond my-file.ly
Building the documentation
Compiling the documentation is a much more involved process, and will likely take 2 to 10 hours.

cd ~/lilypond-git/build/
make doc

The documentation is put in ‘out-www/offline-root/’. You may view the html files by
entering the below text; we recommend that you bookmark the resulting page:

firefox ~/lilypond-git/build/out-www/offline-root/index.html

Installing

Don’t. There is no reason to install lilypond within lilydev. All development work can (and
should) stay within the ‘$¢HOME/lilypond-git/’ directory, and any personal composition or
typesetting work should be done with an official GUB release.

Problems and other options

To select different build options, or isolate certain parts of the build, or to use multiple CPUs
while building, read Chapter 4 [Compiling], page 34.

In particular, contributors working on the documentation should be aware of some bugs in
the build system, and should read the workarounds in Section 4.6.2 [Generating documentation],
page 39.

2.4 Now start work!

Lilydev users may now skip to the chapter which is aimed at their intended contributions:
e Chapter 5 [Documentation work], page 45
e Section 5.8 [Translating the documentation], page 59
e Chapter 6 [Website work], page 71
e Chapter 9 [Regression tests], page 86
e Chapter 10 [Programming work], page 91

Chapter 2: Quick start 10

These chapters are mainly intended for people not using LilyDev, but they contain extra
information about the “behind-the-scenes” activities. We recommend that you read these at
your leisure, a few weeks after beginning work with LilyDev.

e Chapter 3 [Working with source code], page 11
e Chapter 4 [Compiling], page 34

Chapter 3: Working with source code 11

3 Working with source code

Note: New contributors should read Chapter 2 [Quick start], page 5,
and in particular Section 2.2 [Using lily-git], page 6, instead of this
chapter.

Advanced contributors will find this material quite useful, particularly if they are working
on major new features.
3.1 Manually installing lily-git.tcl

We have created an easy-to-use GUI to simplify git for new contributors. If you are comfortable
with the command-line, then skip ahead to Section 3.2 [Starting with Git], page 11.

Note: These instructions are only for people who are not using
Section 2.1 [Lilydev], page 5.

1. If you haven’t already, download and install Git.
e Windows users: download the .exe file labeled “Full installer for official Git” from:
http://code.google.com/p/msysgit/downloads/list

e Other operating systems: either install git with your package manager, or download
it from the “Binaries” section of:

http://git-scm.com/download
2. Download the 1ily-git.tcl script from:
http://git.sv.gnu.org/cgit/lilypond.git/plain/scripts/auxiliar/lily-git.tcl]]
3. To run the program from the command line, navigate to the directory containing
lily-git.tcl and enter:
wish lily-git.tcl
4. Click on the “Get source” button.

This will create a directory called ‘1ilypond-git/’ within your home directory, and will
download the source code into that directory (around 55Mb). When the process is finished,
the “Command output” window will display “Done”, and the button label will change to
say “Update source”.

5. Navigate to the ‘1ilypond-git/’ directory to view the source files.

Note: Throughout the rest of this manual, most command-line input
should be entered from ‘~/1ilypond-git/’. This is referred to as the
top source directory.

Further instructions are in [Daily use of lily-git.tcl|, page 7.

Advanced note: the “Get source” button does not fetch the entire history of the git
repository, so utilities like gitk will only be able to display the most recent additions.
As you continue to work with 1ily-git.tcl, the “Update source” button will take
any new additions and add it to whatever is currently in your repository’s history.

3.2 Starting with Git

Using the Git program directly (as opposed to using the 1ily-git.tcl GUI) allows you to have
much greater control over the contributing process. You should consider using Git if you want
to work on complex projects, or if you want to work on multiple projects concurrently.

http://code.google.com/p/msysgit/downloads/list
http://git-scm.com/download
http://git.sv.gnu.org/cgit/lilypond.git/plain/scripts/auxiliar/lily-git.tcl

Chapter 3: Working with source code 12

3.2.1 Setting up

TODO: Remove this note if incorporating Windows instructions throughout this section:

Note: These instructions assume that you are using the command-line
version of Git 1.5 or higher. Windows users should skip to Section 3.5
[Git on Windows]|, page 27.

Installing Git

If you are using a Unix-based machine, the easiest way to download and install Git is through
a package manager such as rpm or apt-get—the installation is generally automatic. The only
required package is (usually) called git-core, although some of the auxiliary git* packages are
also useful (such as gitk).

Alternatively, you can visit the Git website (http://git-scm.com/) for downloadable bina-
ries and tarballs.

TODO: add Windows installation instructions (or @ref{Git on Windows}).

Initializing a repository
Once Git is installed, you’ll need to create a new directory where your initial repository will be
stored (the example below uses ‘~/1lilypond-git/’, where ~ represents your home directory).
Run git init from within the new directory to initialize an empty repository:

mkdir ~/lilypond-git/; cd “/lilypond-git/

git init

Technical details

This creates (within the ‘~/1ilypond-git/’ directory) a subdirectory called ‘.git/’, which Git
uses to keep track of changes to the repository, among other things. Normally you don’t need
to access it, but it’s good to know it’s there.

Configuring Git

Note: Throughout the rest of this manual, all command-line input
should be entered from the top directory of the Git repository being
discussed (eg. ‘“/1lilypond-git/’). This is referred to as the top source
directory.

Before downloading a copy of the main LilyPond repository, you should configure some basic
settings with the git config command. Git allows you to set both global and repository-specific
options.

To configure settings that affect all repositories, use the --global command line option. For
example, the first two options that you should always set are your name and email, since Git
needs these to keep track of commit authors:

git config --global user.name "John Smith"
git config --global user.email johnQ@example.com

To configure Git to use colored output where possible, use:
git config --global color.ui auto

The text editor that opens when using git commit can also be changed. If none of your
editor-related environment variables are set ($GIT_EDITOR, $VISUAL, or $EDITOR), the
default editor is usually vi or vim. If you're not familiar with either of these, you should

http://git-scm.com/

Chapter 3: Working with source code 13

probably change the default to an editor that you know how to use. For example, to change the
default editor to nano, enter:

git config --global core.editor nano

TODO: Add instructions for changing the editor on Windows, which is a little different, I
think. -mp

Technical details

Git stores the information entered with git config --global in the file ‘.gitconfig’, located
in your home directory. This file can also be modified directly, without using git config. The
‘.gitconfig’ file generated by the above commands would look like this:

[user]

name = John Smith

email = john@example.com
[color]

ui = auto
[core]

editor = nano

Using the git config command without the --global option configures repository-specific
settings, which are stored in the file ‘.git/config’. This file is created when a repository is
initialized (using git init), and by default contains these lines:

[core]
repositoryformatversion = 0
filemode = true
bare = false
logallrefupdates = true

However, since different repository-specific options are recommended for different develop-
ment tasks, it is best to avoid setting any now. Specific recommendations will be mentioned
later in this manual.

3.2.2 Downloading remote branches

Organization of remote branches

The main LilyPond repository is organized into branches to facilitate development. These are
often called remote branches to distinguish them from local branches you might create yourself
(see Section 3.3.3 [Using local branches|, page 16).

The master branch contains all the source files used to build LilyPond, which includes the
program itself (both stable and development releases), the documentation (and its translations),
and the website. Generally, the master branch is expected to compile successfully.

The 1ilypond/translation branch is a side branch that allows translators to work with-
out needing to worry about compilation problems. Periodically, the Translation Meister (af-
ter verifying that it doesn’t break compilation), will merge this branch back into master
to incorporate recent translations. Similarly, the master branch is usually merged into the
lilypond/translation branch after significant changes to the English documentation. See
Section 5.8 [Translating the documentation|, page 59 for details.

LilyPond repository sources

The recommended source for downloading a copy of the main repository is:
git://git.sv.gnu.org/lilypond.git
However, if your internet router filters out connections using the GIT protocol, or if you
experience difficulty connecting via GIT, you can try these other sources:

Chapter 3: Working with source code 14

ssh://git.sv.gnu.org/srv/git/lilypond.git
http://git.sv.gnu.org/r/lilypond.git

The SSH protocol can only be used if your system is properly set up to use it. Also, the
HTTP protocol is slowest, so it should only be used as a last resort.

Downloading individual branches

Once you have initialized an empty Git repository on your system (see [Initializing a repository],
page 12), you can download a remote branch into it. Make sure you know which branch you
want to start with.

To download the master branch, enter the following;:

git remote add -ft master -m master \
origin git://git.sv.gnu.org/lilypond.git/

To download the 1ilypond/translation branch, enter:

git remote add -ft lilypond/translation -m \
lilypond/translation origin git://git.sv.gnu.org/lilypond.git/

The git remote add process could take up to ten minutes, depending on the speed of your
connection. The output will be something like this:

Updating origin

remote: Counting objects: 235967, done.

remote: Compressing objects: 100% (42721/42721), done.

remote: Total 235967 (delta 195098), reused 233311 (delta 192772)
Receiving objects: 100% (235967/235967), 68.37 MiB | 479 KiB/s, done.
Resolving deltas: 100% (195098/195098), done.

From git://git.sv.gnu.org/lilypond

* [new branch] master -> origin/master
From git://git.sv.gnu.org/lilypond

* [new tag] flower/1.0.1 -> flower/1.0.1

* [new tag] flower/1.0.10 -> flower/1.0.10

* [new tag] release/2.9.6 -> release/2.9.6

* [new tag] release/2.9.7 -> release/2.9.7

When git remote add is finished, the remote branch should be downloaded into your
repository—though not yet in a form that you can use. In order to browse the source code
files, you need to create and checkout your own local branch. In this case, however, it is easier
to have Git create the branch automatically by using the checkout command on a non-existent
branch. Enter the following:

git checkout -b branch origin/branch
where branch is the name of your tracking branch, either master or 1ilypond/translation.
Git will issue some warnings; this is normal:

warning: You appear to be on a branch yet to be born.

warning: Forcing checkout of origin/master.

Branch master set up to track remote branch master from origin.
Already on 'master'

By now the source files should be accessible—you should be able to edit any files in the
‘lilypond-git/’ directory using a text editor of your choice. But don’t start just yet! Before
editing any source files, learn how to keep your changes organized and prevent problems later—
read Section 3.3 [Basic Git procedures], page 15.

Chapter 3: Working with source code 15

Technical Details

The git remote add command should add some lines to your local repository’s ‘. git/config’
file:

[remote "origin"]
url = git://git.sv.gnu.org/lilypond.git/
fetch = +refs/heads/master:refs/remotes/origin/master

Downloading all remote branches

To download all remote branches at once, you can clone the entire repository:
git clone git://git.sv.gnu.org/lilypond.git

Other branches

Most contributors will never need to touch the other branches. If you wish to do so, you will
need more familiarity with Git; please see Section 3.7 [Other Git documentation|, page 33.

e dev/XYZ: These branches are for individual developers. They store code which is not yet
stable enough to be added to the master branch.

e stable/XYZ: The branches are kept for archival reasons.

Another item of interest might be the Grand Unified Builder, our cross-platform building
tool. Since it is used by projects as well, it is not stored in our gub repository. For more info,
see http://1lilypond.org/gub. The git location is http://github.com/janneke/gub.

3.3 Basic Git procedures

3.3.1 The Git contributor’s cycle

Here is a simplified view of the contribution process on Git:

1. Update your local repository by pulling the most recent updates from the remote repository.

o

Edit source files within your local repository’s working directory.
3. Commit the changes you’ve made to a local branch.

4. Generate a patch to share your changes with the developers.

3.3.2 Pulling and rebasing

When developers push new patches to the git.sv.gnu.org repository, your local repository is
not automatically updated. It is important to keep your repository up-to-date by periodically
pulling the most recent commits from the remote branch. Developers expect patches to be as
current as possible, since outdated patches require extra work before they can be used.

Occasionally you may need to rework some of your own modifications to match changes made
to the remote branch (see Section 3.4.2 [Resolving conflicts|, page 22), and it’s considerably easier
to rework things incrementally. If you don’t update your repository along the way, you may
have to spend a lot of time resolving branch conflicts and reconfiguring much of the work you’ve
already done.

Fortunately, Git is able to resolve certain types of branch conflicts automatically with a
process called rebasing. When rebasing, Git tries to modify your old commits so they appear as
new commits (based on the latest updates). For a more involved explanation, see the git-rebase
man page.

To pull without rebasing (recommended for translators), use the following command:

git pull # recommended for translators

If you're tracking the remote master branch, you should add the -r option (short for
--rebase) to keep commits on your local branch current:

http://lilypond.org/gub
http://github.com/janneke/gub

Chapter 3: Working with source code 16

git pull -r # use with caution when translating

If you don’t edit translated documentation and don’t want to type -r every time, configure
the master branch to rebase by default with this command:

git config branch.master.rebase true
If pull fails because of a message like

error: Your local changes to 'Documentation/learning/tutorial.itely’
would be overwritten by merge. Aborting.

or

Documentation/learning/tutorial.itely: needs update
refusing to pull with rebase: your working tree is not up-to-date

it means that you have modified some files in you working tree without committing changes (see
Section 3.3.4 [Commits and patches|, page 17); you can use the git stash command to work
around this:

git stash # save uncommitted changes
git pull -r # pull using rebase (translators omit "-r")
git stash pop # reapply previously saved changes

Note that git stash pop will try to apply a patch, and this may create a conflict. If this
happens, see Section 3.4.2 [Resolving conflicts], page 22.

TODO: I think the next paragraph is confusing. Perhaps prepare the reader for new terms
‘committish’ and ‘head’? -mp
(0
Note: translators and documentation editors, if you have changed com-
mittishes in the head of translated files using commits you have not yet
pushed to git.sv.gnu.org, please do not rebase. If you want to avoid
wondering whether you should rebase each time you pull, please always
use committishes from master and/or lilypond/translation branch on
git.sv.gnu.org, which in particular implies that you must push your
changes to documentation except committishes updates (possibly after

having rebased), then update the committishes and push them.
-)

TODO: when committishes automatic conditional update have been tested and documented,
append the following to the warning above: Note that using update-committishes make target
generally touches committishes.

Technical details
The git config command mentioned above adds the line rebase = true to the master branch
in your local repository’s ‘.git/config’ file:

[branch "master"]
remote = origin
merge = refs/heads/master
rebase = true

3.3.3 Using local branches

Creating and removing branches

Local branches are useful when you’re working on several different projects concurrently. To
create a new branch, enter:

git branch name

To delete a branch, enter:

Chapter 3: Working with source code 17

git branch -d name

Git will ask you for confirmation if it sees that data would be lost by deleting the branch.
Use -D instead of -d to bypass this. Note that you cannot delete a branch if it is currently
checked out.

Listing branches and remotes
You can get the exact path or URL of all remote branches by running:
git remote -v
To list Git branches on your local repositories, run

git branch # list local branches only
git branch -r # list remote branches
git branch -a # list all branches

Checking out branches

To know the currently checked out branch, i.e. the branch whose source files are present in your
working tree, read the first line of the output of

git status
The currently checked out branch is also marked with an asterisk in the output of git branch.

You can check out another branch other_branch, i.e. check out other_branch to the
working tree, by running
git checkout other_branch
Note that it is possible to check out another branch while having uncommitted changes, but

it is not recommended unless you know what you are doing; it is recommended to run git
status to check this kind of issue before checking out another branch.

Merging branches

To merge branch foo into branch bar, i.e. to “add” all changes made in branch foo to branch
bar, run

git checkout bar
git merge foo

If any conflict happens, see Section 3.4.2 [Resolving conflicts|, page 22.

There are common usage cases for merging: as a translator, you will often want to merge
master into 1ilypond/translation; on the other hand, the Translations meister wants to merge
lilypond/translation into master whenever he has checked that lilypond/translation
builds successfully.

3.3.4 Commits and patches

Understanding commits

Technically, a commit is a single point in the history of a branch, but most developers use the
term to mean a commit object, which stores information about a particular revision. A single
commit can record changes to multiple source files, and typically represents one logical set of
related changes (such as a bug-fix). You can list the ten most recent commits in your current
branch with this command:

git log -10 --oneline
If you’re using an older version of Git and get an ‘unrecognized argument’ error, use this
instead:

Chapter 3: Working with source code 18

git log -10 —-pretty=oneline --abbrev-commit

More interactive lists of the commits on the remote master branch are avail-
able at http://git.sv.gnu.org/gitweb/?p=1lilypond.git;a=shortlog and
http://git.sv.gnu.org/cgit/lilypond.git/log/.

Making commits

Once you have modified some source files in your working directory, you can make a commit
with the following procedure:

1. Make sure you've configured Git properly (see [Configuring Git], page 12). Check that
your changes meet the requirements described in Section 10.5 [Code style|, page 95 and/or
Section 5.4 [Documentation policy|, page 54. For advanced edits, you may also want to
verify that the changes don’t break the compilation process.

2. Run the following command:
git status

to make sure you’re on the right branch, and to see which files have been modified, added
or removed, etc. You may need to tell Git about any files you've added by running one of
these:

git add file # add untracked file individually
git add . # add all untracked files in current directory

After git add, run git status again to make sure you got everything. You may also need
to modify ‘GNUmakefile’.

3. Preview the changes about to be committed (to make sure everything looks right) with:
git diff HEAD
The HEAD argument refers to the most recent commit on the currently checked-out branch.
4. Generate the commit with:
git commit -a
The -a is short for --all which includes modified and deleted files, but only those newly
created files that have previously been added.

Commit messages

When you run the git commit -a command, Git automatically opens the default text editor
so you can enter a commit message. If you find yourself in a foreign editing environment, you're
probably in vi or vim. If you want to switch to an editor you’re more familiar with, quit by
typing :q! and pressing <Enter>. See [Configuring Git], page 12 for instructions on changing
the default editor.

In any case, Git will open a text file for your commit message that looks like this:

Please enter the commit message for your changes. Lines starting
with '#' will be ignored, and an empty message aborts the commit.
On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#
#

modified: working.itexi

Your commit message should begin with a one-line summary describing the change (no more
than 50 characters long), and if necessary a blank line followed by several lines giving the details:

http://git.sv.gnu.org/gitweb/?p=lilypond.git;a=shortlog
http://git.sv.gnu.org/cgit/lilypond.git/log/

Chapter 3: Working with source code 19

Doc: add Baerenreiter and Henle solo cello suites

Added comparison of solo cello suite engravings to new essay with
high-res images, fixed cropping on Finale example.
Commit messages often start with a short prefix describing the general location of the changes.

If a commit affects the documentation in English (or in several languages simultaneously) the
commit message should be prefixed with “Doc: ”. If the commit affects only one of the trans-
lations, the commit message should be prefixed with “Doc-**: 7| where ** is the two-letter
language code. Commits that affect the website should use “Web: ” for English, and “Web-**: ”
for the other languages. Also, changes to a single file are often prefixed with the name of the
file involved. Visit the links listed in [Understanding commits]|, page 17 for examples.

Making patches

If you want to share your changes with other contributors and developers, you need to generate
patches from your commits. We prefer it if you follow the instructions in [Uploading a patch for
review|, page 19. However, we present an alternate method here.

You should always run git pull -r (translators should leave off the -r) before doing this
to ensure that your patches are as current as possible.

Once you have made one or more commits in your local repository, and pulled the most
recent commits from the remote branch, you can generate patches from your local commits with
the command:

git format-patch origin

The origin argument refers to the remote tracking branch at git.sv.gnu.org. This com-
mand generates a separate patch for each commit that’s in the current branch but not in the
remote branch. Patches are placed in the current working directory and will have names that
look something like this:

0001-Doc-Fix-typos.patch
0002-Web-Remove-dead-links.patch

Send an email (must be less than 64 KB) to lilypond-devel@gnu.org briefly
explaining your work, with the patch files attached. Translators should send patches to
translations@lilynet.net. After your patches are reviewed, the developers may push one or
more of them to the main repository or discuss them with you.

Uploading a patch for review
Any non-trivial change should be uploaded to our “Rietveld” code review website:

http://codereview.appspot.com/

git-cl install
LilyDev users should skip over these ‘install’ instructions.
1. Install git-cl by entering:
git clone git://neugierig.org/git-cl.git

2. Add the ‘git-cl/’ directory to your PATH, or create a symbolic link to the git-cl and
upload.py scripts in one of your PATH directories (such as ‘$HOME/bin’).

git-cl configuration
LilyDev users should perform these ‘configuration’ instructions.

1. You must have a gmail account; please create one if you do not have one already.

mailto:lilypond-devel@gnu.org
mailto:translations@lilynet.net
http://codereview.appspot.com/

Chapter 3: Working with source code 20

2. Move into the top source directory and then configure git cl with the following commands.
If you do not understand any question, just answer with a newline (CR).

cd $HOME/lilypond-git/
git cl config

The “CC list” question should be answered with:
lilypond-devel@gnu.org

Uploading patch set

Note: Unless you are familiar with branches, only work on one set of
changes at once.

There are two methods, depending on your git setup.
e Master branch: (easy option, and used in 1ily-git.tcl)
If you added your patch to master, then:
git pull -r
git cl upload origin/master

If you have git push ability, make sure that you remove your patch (with git rebase or
git reset) before pushing other stuff.

e Separate branch: (complicated option)

Ensure your changes are committed in a separate branch, which should differ from the
reference branch to be used by just the changes to be uploaded. If the reference branch
is to be origin/master, ensure this is up-to-date. If necessary, use git rebase to rebase the
branch containing the changes to the head of origin/master. Finally, check out branch with
the changes and enter the command:

git cl upload <reference SHA1l ID>

where <reference SHA1 ID> is the SHA1 ID of the commit to be used as a reference source
for the patch. Generally, this will be the SHA1 ID of origin/master, and in that case the
command:

git cl upload origin/master
can be used.

After prompting for your Google email address and password, the patch set will be posted
to Rietveld, and you will be given a URL for your patch.

Note: Some installations of git-cl fail when uploading a patch set that
includes a .scm file. When this happens, it can generally be fixed by
editing the file ‘/etc/mime.types’. Add a line to this file containing
text/x-script.scheme scm.

Announcing your patch set

You should then announce the patch by logging into the code review issue webpage and using
“Publish + Mail Comments” to add a (mostly bogus) comment to your issue. The text of your
comment will be sent to our developer mailing list.

Note: There is no automatic notification of a new patch; you must add
a comment yourself.

Chapter 3: Working with source code 21

Revisions

As revisions are made in response to comments, successive patch sets for the same issue can be
uploaded by reissuing the git-cl command with the modified branch checked out.

Sometimes in response to comments on revisions, the best way to work may require creation
of a new branch in git. In order to associate the new branch with an existing Rietveld issue, the
following command can be used:

git cl issue issue-number

where issue-number is the number of the existing Rietveld issue.

Resetting git cl

If git cl becomes confused, you can “reset” it by running:

git cl issue O

3.4 Advanced Git procedures

Note: This section is not necessary for normal contributors; these com-
mands are presented for information for people interested in learning
more about git.

It is possible to work with several branches on the same local Git repository; this is especially
useful for translators who may have to deal with both 1ilypond/translation and a stable
branch, e.g. stable/2.12.

Some Git commands are introduced first, then a workflow with several Git branches of
LilyPond source code is presented.

3.4.1 Advanced Git concepts

A bit of Git vocabulary will be explained below. The following is only introductory; for a better
understanding of Git concepts, you may wish to read Section 3.7 [Other Git documentation],
page 33.
The git pull origin command above is just a shortcut for this command:
git pull git://git.sv.gnu.org/lilypond.git/ branch:origin/branch

where branch is typically master or lilypond/translation; if you do not know or remember,
see Section 3.2.2 [Downloading remote branches|, page 13 to remember which commands you
issued or which source code you wanted to get.

A commit is a set of changes made to the sources; it also includes the committish of the parent
commit, the name and e-mail of the author (the person who wrote the changes), the name and
e-mail of the committer (the person who brings these changes into the Git repository), and a
commit message.

A committish is the SHA1 checksum of a commit, a number made of 40 hexadecimal digits,
which acts as the internal unique identifier for this commit. To refer to a particular revision,
don’t use vague references like the (approximative) date, simply copy and paste the committish.

A branch is nothing more than a pointer to a particular commit, which is called the head
of the branch; when referring to a branch, one often actually thinks about its head and the
ancestor commits of the head.

Now we will explain the two last commands you used to get the source code from Git—see
[Downloading individual branches|, page 14.

git remote add -ft branch -m branch \
origin git://git.sv.gnu.org/lilypond.git/

Chapter 3: Working with source code 22

git checkout -b branch origin/branch

The git remote has created a branch called origin/branch in your local Git repository.
As this branch is a copy of the remote branch web from git.sv.gnu.org LilyPond repository, it is
called a remote branch, and is meant to track the changes on the branch from git.sv.gnu.org: it
will be updated every time you run git pull origin or git fetch origin.

The git checkout command has created a branch named branch. At the beginning, this
branch is identical to origin/branch, but it will differ as soon as you make changes, e.g. adding
newly translated pages or editing some documentation or code source file. Whenever you pull,
you merge the changes from origin/branch and branch since the last pulling. If you do not have
push (i.e. “write”) access on git.sv.gnu.org, your branch will always differ from origin/branch.
In this case, remember that other people working like you with the remote branch branch of
git://git.sv.gnu.org/lilypond.git/ (called origin/branch on your local repository) know nothing
about your own branch: this means that whenever you use a committish or make a patch, others
expect you to take the latest commit of origin/branch as a reference.

Finally, please remember to read the man page of every Git command you will find in this
manual in case you want to discover alternate methods or just understand how it works.

3.4.2 Resolving conflicts

Occasionally an update may result in conflicts — this happens when you and somebody else have
modified the same part of the same file and git cannot figure out how to merge the two versions
together. When this happens, you must manually merge the two versions.

If you need some documentation to understand and resolve conflicts, see paragraphs How
conflicts are presented and How to resolve conflicts in git merge man page.

If all else fails, you can follow the instructions in Section 3.4.3 [Reverting all local changes],
page 22. Be aware that this eliminates any changes you have made!

3.4.3 Reverting all local changes

Sometimes git will become hopelessly confused, and you just want to get back to a known, stable
state. This command destroys any local changes you have made, but at least you get back to
the current online version:

git reset --hard origin/master
3.4.4 Working with remote branches

Fetching new branches from git.sv.gnu.org

To fetch and check out a new branch named branch on git.sv.gnu.org, run from top of the Git
repository

git config --add remote.origin.fetch \
+refs/heads/branch :refs/remotes/origin/branch

git checkout --track -b branch origin/branch
After this, you can pull branch from git.sv.gnu.org with:
git pull
Note that this command generally fetches all branches you added with git remote add
(when you initialized the repository) or git config --add, i.e. it updates all remote branches
from remote origin, then it merges the remote branch tracked by the current branch into the

current branch. For example, if your current branch is master, origin/master will be merged
into master.

Chapter 3: Working with source code 23

Local clones, or having several working trees

If you play with several Git branches, e.g. master, 1ilypond/translation, stable/2.12), you
may want to have one source and build tree for each branch; this is possible with subdirectories
of your local Git repository, used as local cloned subrepositories. To create a local clone for the
branch named branch, run

git checkout branch

git clone -1lsn . subdir
cd subdir

git reset --hard

Note that subdir must be a directory name which does not already exist. In subdir, you
can use all Git commands to browse revisions history, commit and uncommit changes; to update
the cloned subrepository with changes made on the main repository, cd into subdir and run
git pull; to send changes made on the subrepository back to the main repository, run git push
from subdir. Note that only one branch (the currently checked out branch) is created in the
subrepository by default; it is possible to have several branches in a subrepository and do usual
operations (checkout, merge, create, delete...) on these branches, but this possibility is not
detailed here.

When you push branch from subdir to the main repository, and branch is checked
out in the main repository, you must save uncommitted changes (see git stash) and do
git reset --hard in the main repository in order to apply pushed changes in the working
tree of the main repository.

3.4.5 Git log

The commands above don’t only bring you the latest version of the sources, but also the full
history of revisions (revisions, also called commits, are changes made to the sources), stored in
the ‘.git’ directory. You can browse this history with

git log # only shows the logs (author, committish and commit message)
git log -p # also shows diffs
gitk # shows history graphically

Note: The gitk command may require a separate gitk package, avail-
able in the appropriate distribution’s repositories.

3.4.6 Applying remote patches

TODO: Explain how to determine if a patch was created with git format-patch.

Well-formed git patches created with git format-patch should be committed with the fol-
lowing command:

git am patch
Patches created without git format-patch can be applied in two steps. The first step is to
apply the patch to the working tree:

git apply patch
The second step is to commit the changes and give credit to the author of the patch. This can
be done with the following command:

git commit -a --author="John Smith <johnQ@example.com>"

3.4.7 Sending and receiving patches via email

The default x-diff MIME type associated with patch files (i.e., files whose name ends in . patch)
means that the encoding of line endings may be changed from UNIX to DOS format when they

Chapter 3: Working with source code 24

are sent as attachments. Attempting to apply such an inadvertently altered patch will cause git
to fail with a message about ‘whitespace errors’.

The solution to such problems is surprisingly simple—just change the default file extension
of patches generated by git to end in .txt, for example:

git config format.suffix '.patch.txt'
This should cause email programs to apply the correct base64 encoding to attached patches.

If you receive a patch with DOS instead of UNIX line-endings, it can be converted back using
the dos2unix utility.

Lots of useful information on email complications with patches is provided on the Wine wiki
at http://wiki.winehq.org/GitWine.

3.4.8 Cleaning up multiple patches

If you have been developing on your own branch for a while, you may have more commmits than
is really sensible. To revise your work and condense commits, use:

git rebase origin/master
git rebase -i origin/master

Note: Be a bit cautious — if you completely remove commits during the
interactive session, you will... err... completely remove those commits.

3.4.9 Commit access

Most contributors are not able to commit patches directly to the main repository—only mem-
bers of the LilyPond development team have commit access. If you are a contributor and are
interested in joining the development team, contact the Project Manager through the mailing list
(1ilypond-devel@gnu.org). Generally, only contributors who have already provided a number
of patches which have been pushed to the main repository will be considered for membership.

If you have been approved by the Project Manager, use the following procedure to obtain
commit access:

1. If you don’t already have one, set up a Savannah wuser account at
https://savannah.gnu.org/account/register.php. If your web browser re-
sponds with an “untrusted connection” message when you visit the link, follow
the steps for including the CAcert root certificate in your browser, given at
http://savannah.gnu.org/tls/tutorial/.

Note: Savannah will silently put your username in lower-case — do
not try to use capital letters.

2. After registering, if you are mnot logged in automatically, login at
https://savannah.gnu.org/account/login.php—this should take you to your
“my” page (https://savannah.gnu.org/my/).

3. Click on the “My Groups” link to access the “My Group Membership” page. From there,
find the “Request for Inclusion” box and search for “LilyPond”. Among the search results,
check the box labeled “GNU LilyPond Music Typesetter” and write a brief (required)
message for the Project Manager (“Hey it’s me!” should be fine).

Note that you will not have commit access until the Project Manager activates your mem-
bership. Once your membership is activated, LilyPond should appear under the heading
“Groups I'm Contributor of” on your “My Group Membership” page.

4. Generate an SSH ‘dsa’ key pair. Enter the following at the command prompt:

http://wiki.winehq.org/GitWine
mailto:lilypond-devel@gnu.org
https://savannah.gnu.org/account/register.php
http://savannah.gnu.org/tls/tutorial/
https://savannah.gnu.org/account/login.php
https://savannah.gnu.org/my/

Chapter 3: Working with source code 25

ssh-keygen -t dsa
When prompted for a location to save the key, press <KENTER> to accept the default location
(‘~/.ssh/id_dsa’).
Next you are asked to enter an optional passphrase. On most systems, if you use a
passphrase, you will likely be prompted for it every time you use git push or git pull.
You may prefer this since it can protect you from your own mistakes (like pushing when
you mean to pull), though you may find it tedious to keep re-entering it.

You can change/enable/disable your passphrase at any time with:
ssh-keygen -f “/.ssh/id_dsa -p

Note that the GNOME desktop has a feature which stores your passphrase for you for
an entire GNOME session. If you use a passphrase to “protect you from yourself”, you
will want to disable this feature, since you’ll only be prompted once. Run the following
command, then logout of GNOME and log back in:

gconftool-2 --set -t bool \
/apps/gnome-keyring/daemon-components/ssh false

¢

After setting up your passphrase, your private key is saved as ‘~/.ssh/id_dsa’ and your
public key is saved as ‘”/.ssh/id_dsa.pub’.

5. Register your public SSH ‘dsa’ key with Savannah. From the “My Account Configuration”
page, click on “Edit SSH Keys”, then paste the contents of your ‘~/.ssh/id_dsa.pub’ file
into one of the “Authorized keys” text fields, and click “Update”.

Savannah should respond with something like:
Success: Key #1 seen Keys registered

6. Configure Git to use the SSH protocol (instead of the GIT protocol). From your local Git
repository, enter:

git config remote.origin.url \
ssh://user@git.sv.gnu.org/srv/git/lilypond.git
where user is your username on Savannah.

7. After your membership has been activated and you’ve configured Git to use SSH, test the
connection with:
git pull --verbose
SSH should issue the following warning:
The authenticity of host 'git.sv.gnu.org (140.186.70.72)"' can't
be established.
RSA key fingerprint is
80:5a:b0:0c:ec:93:66:29:49:7e:04:2b:fd:ba:2c:d5b.
Are you sure you want to continue connecting (yes/no)?

Make sure the RSA key fingerprint displayed matches the one above. If it doesn’t, respond
“no” and check that you configured Git properly in the previous step. If it does match,
respond “yes”. SSH should then issue another warning:

Warning: Permanently added 'git.sv.gnu.org,140.186.70.72' (RSA) to
the list of known hosts.

The list of known hosts is stored in the file ‘*~/.ssh/known_hosts’.

At this point, you are prompted for your passphrase if you have one, then Git will attempt
a pull.

If git pull --verbose fails, you should see error messages like these:

Permission denied (publickey).
fatal: The remote end hung up unexpectedly

Chapter 3: Working with source code 26

If you get the above error, you may have made a mistake when registering your SSH key at
Savannah. If the key is properly registered, you probably just need to wait for the Savannah
server to activate it. It usually takes a few minutes for the key to be active after registering
it, but if it still doesn’t work after an hour, ask for help on the mailing list.

If git pull --verbose succeeds, the output will include a ‘From’ line that shows ‘ssh’ as
the protocol:

From ssh://user@git.sv.gnu.org/srv/git/lilypond
If the protocol shown is not ‘ssh’, check that you configured Git properly in the previous
step.
8. Test your commit access with a dry run:
git push --dry-run --verbose

Note that recent versions of Git (Git 1.6.3 or later) will issue a big warning if the above
command is used. The simplest solution is to tell Git to push all matching branches by
default:

git config push.default matching
Then git push should work as before. For more details, consult the git push man page.

Technical details

e On Firefox, to view or remove the CAcert root certificate, go to: Edit > Preferences >
Advanced > Encryption > View Certificates > Authorities > Certificate Name > Root CA >
CA Cert Signing Authority.

e The git config commands above should modify your local repository’s ‘. git/config’ file.
These lines:

[remote "origin"]
url = git://git.sv.gnu.org/lilypond.git/
should now be changed to:
[remote "origin"]
url = ssh://user@git.sv.gnu.org/srv/git/lilypond.git
where user is your login name on Savannah.

e Similarly, the git config push.default matching command should add these lines to

‘.git/config”
[push]
default = matching

Known issues and warnings

Encryption protocols, including ssh, generally do not permit packet fragmentation to avoid
introducing a point of insecurity. This means that the maximum packet size must not exceed
the smallest MTU (Maximum Transmission Unit) set in the routers along the path. This smallest
MTU is determined by a procedure during call set-up which relies on the transmission over the
path of ICMP packets. If any of the routers in the path block ICMP packets this mechanism
fails, resulting in the possibility of packets being transmitted which exceed the MTU of one of
the routers. If this happens the packet is discarded, causing the ssh session to hang, timeout or
terminate with the error message

ssh: connect to host <host ip addr> port 22: Bad file number
fatal: The remote end hung up unexpectedly

depending on precisely when in the proceedings the first large packet is transmitted. Most
routers on the internet have MTU set to 1500, but routers installed in homes to connect via
broadband may use a slightly smaller MTU for efficient transmission over ATM. If this problem
is encountered a possible work-around is to set the MTU in the local router to 1500.

Chapter 3: Working with source code 27

3.5 Git on Windows

TODO: Decide what to do with this... Pare it down? Move paragraphs next to analogous Unix
instructions? -mp

3.5.1 Background to nomenclature

Git is a system for tracking the changes made to source files by a distributed set of editors. It is
designed to work without a master repository, but we have chosen to have a master repository
for LilyPond files. Editors hold a local copy of the master repository together with any changes
they have made locally. Local changes are held in a local ‘branch’, of which there may be several,
but these instructions assume you are using just one. The files visible in the local repository
always correspond to those on the currently ‘checked out’ local branch.

Files are edited on a local branch, and in that state the changes are said to be ‘unstaged’.
When editing is complete, the changes are moved to being ‘staged for commit’, and finally the
changes are ‘committed’ to the local branch. Once committed, the changes (called a ‘commit’)
are given a unique 40-digit hexadecimal reference number called the ‘Committish’ or ‘SHA1 ID’
which identifies the commit to Git. Such committed changes can be sent to the master repository
by ‘pushing’ them (if you have write permission) or by sending them by email to someone who
has, either as a complete file or as a ‘diff’ or ‘patch’ (which send just the differences from the
master repository).

3.5.2 Installing git

Obtain Git from http://code.google.com/p/msysgit/downloads/list (note, not msysGit,
which is for Git developers and not PortableGit, which is not a full git installation) and install
it.

Note that most users will not need to install SSH. That is not required until you have been
granted direct push permissions to the master git repository.

Start Git by clicking on the desktop icon. This will bring up a command line bash shell.
This may be unfamiliar to Windows users. If so, follow these instructions carefully. Commands
are entered at a $ prompt and are terminated by keying a newline.

3.5.3 Initialising Git

Decide where you wish to place your local Git repository, creating the folders in Windows as
necessary. Here we call the folder to contain the repository [path]/Git, but if you intend using
Git for other projects a directory name like 1ilypond-git might be better. You will need to
have space for around 100Mbytes.

Start the Git bash shell by clicking on the desk-top icon installed with Git and type
cd [path]/Git
to position the shell at your new Git repository.
Note: if [path] contains folders with names containing spaces use
cd "[path]/Git"
Then type
git init
to initialize your Git repository.
Then type (all on one line; the shell will wrap automatically)
git remote add -ft master origin git://git.sv.gnu.org/lilypond.git
to download the lilypond master files.

http://code.google.com/p/msysgit/downloads/list

Chapter 3: Working with source code 28

Note: Be patient! Even on a broadband connection this can take 10
minutes or more. Wait for lots of [new tag] messages and the $ prompt.

We now need to generate a local copy of the downloaded files in a new local branch. Your
local branch needs to have a name. It is usual to call it ‘master’ and we shall do that here.

To do this, type
git checkout -b master origin/master

This creates a second branch called ‘master’. You will see two warnings (ignore these), and
a message advising you that your local branch ‘master’ has been set up to track the remote
branch. You now have two branches, a local branch called ‘master’, and a tracking branch
called ‘origin/master’, which is a shortened form of ‘remotes/origin/master’.

Return to Windows Explorer and look in your Git repository. You should see lots of folders.
For example, the LilyPond documentation can be found in [path]/Git/Documentation/.

The Git bash shell is terminated by typing exit or by clicking on the usual Windows close-
window widget.

3.5.4 Git GUI

Almost all subsequent work will use the Git Graphical User Interface, which avoids having to
type command line commands. To start Git GUI first start the Git bash shell by clicking on
the desktop icon, and type

cd [path]/Git
git gui

The Git GUI will open in a new window. It contains four panels and 7 pull-down menus. At
this stage do not use any of the commands under Branch, Commit, Merge or Remote. These
will be explained later.

The top panel on the left contains the names of files which you are in the process of editing
(Unstaged Changes), and the lower panel on the left contains the names of files you have finished
editing and have staged ready for committing (Staged Changes). At present, these panels will
be empty as you have not yet made any changes to any file. After a file has been edited and
saved the top panel on the right will display the differences between the edited file selected in
one of the panels on the left and the last version committed on the current branch.

The panel at bottom right is used to enter a descriptive message about the change before
committing it.

The Git GUI is terminated by entering CNTL-Q while it is the active window or by clicking
on the usual Windows close-window widget.

3.5.5 Personalising your local git repository
Open the Git GUI, click on
Edit -> Options

and enter your name and email address in the left-hand (Git Repository) panel. Leave
everything else unchanged and save it.

Note that Windows users must leave the default setting for line endings unchanged. All files
in a git repository must have lines terminated by just a LF, as this is required for Merge to work,
but Windows files are terminated by CRLF by default. The git default setting causes the line
endings of files in a Windows git repository to be flipped automatically between LF and CRLF
as required. This enables files to be edited by any Windows editor without causing problems in
the git repository.

Chapter 3: Working with source code 29

3.5.6 Checking out a branch

At this stage you have two branches in your local repository, both identical. To see them click
on

Branch -> Checkout
You should have one local branch called ‘master’ and one tracking branch called ‘ori-
gin/master’. The latter is your local copy of the ‘remotes/origin/master’ branch in the master
LilyPond repository. The local ‘master’ branch is where you will make your local changes.
When a particular branch is selected, i.e., checked out, the files visible in your repository are
changed to reflect the state of the files on that branch.

3.5.7 Updating files from ‘remote/origin/master’

Before starting the editing of a file, ensure your local repository contains the latest version of
the files in the remote repository by first clicking

Remote -> Fetch from -> origin
in the Git GUL

This will place the latest version of every file, including all the changes made by others, into
the ‘origin/master’ branch of the tracking branches in your git repository. You can see these
files by checking out this branch, but you must never edit any files while this branch is checked
out. Check out your local ‘master’ branch again.

You then need to merge these fetched files into your local ‘master’ branch by clicking on
Merge -> Local Merge
and if necessary select the local ‘master’ branch.

Note that a merge cannot be completed if you have made any local changes which have not
yet been committed.

This merge will update all the files in the ‘master’ branch to reflect the current state of
the ‘origin/master’ branch. If any of the changes conflict with changes you have made yourself
recently you will be notified of the conflict (see below).

3.5.8 Editing files

First ensure your ‘master’ branch is checked out, then simply edit the files in your local Git
repository with your favourite editor and save them back there. If any file contains non-ASCII
characters ensure you save it in UTF-8 format. Git will detect any changes whenever you restart
Git GUI and the file names will then be listed in the Unstaged Changes panel. Or you can click
the Rescan button to refresh the panel contents at any time. You may break off and resume
editing any time.

The changes you have made may be displayed in diff form in the top right-hand panel of Git
GUI by clicking on the file name shown in one of the left panels.

When your editing is complete, move the files from being Unstaged to Staged by clicking the
document symbol to the left of each name. If you change your mind it can be moved back by
clicking on the ticked box to the left of the name.

Finally the changes you have made may be committed to your ‘master’ branch by entering a
brief message in the Commit Message box and clicking the Commit button.

If you wish to amend your changes after a commit has been made, the original version and
the changes you made in that commit may be recovered by selecting

Commit -> Amend Last Commit
or by checking the Amend Last Commit radio button at bottom right. This will return the
changes to the Staged state, so further editing made be carried out within that commit. This
must only be done before the changes have been Pushed or sent to your mentor for Pushing -
after that it is too late and corrections have to be made as a separate commit.

Chapter 3: Working with source code 30

3.5.9 Sending changes to ‘remotes/origin/master’

If you do not have write access to ‘remotes/origin/master’ you will need to send your changes
by email to someone who does.

First you need to create a diff or patch file containing your changes. To create this, the file
must first be committed. Then terminate the Git GUL In the git bash shell first cd to your Git
repository with

cd [path]/Git
if necessary, then produce the patch with

git format-patch origin

This will create a patch file for all the locally committed files which differ from ‘origin/master’.
The patch file can be found in [path]/Git and will have a name formed from the commit message.

3.5.10 Resolving merge conflicts

As soon as you have committed a changed file your local master branch has diverged
from origin/master, and will remain diverged until your changes have been committed in
remotes/origin/master and Fetched back into your origin/master branch. Similarly, if a
new commit has been made to remotes/origin/master by someone else and Fetched, your
local master branch is divergent. You can detect a divergent branch by clicking on

Repository -> Visualise all branch history

This opens up a very useful new window called ‘gitk’. Use this to browse all the commits
made by yourself and others.

If the diagram at top left of the resulting window does not show your master tag on the
same node as the remotes/origin/master tag your branch has diverged from origin/master.
This is quite normal if files you have modified yourself have not yet been Pushed to
remotes/origin/master and Fetched, or if files modified and committed by others have been
Fetched since you last Merged origin/master into your local master branch.

If a file being merged from origin/master differs from one you have modified in a way that
cannot be resolved automatically by git, Merge will report a Conflict which you must resolve by
editing the file to create the version you wish to keep.

This could happen if the person updating remotes/origin/master for you has added some
changes of his own before committing your changes to remotes/origin/master, or if someone
else has changed the same file since you last fetched the file from remotes/origin/master.

Open the file in your editor and look for sections which are delimited with ...

[to be completed when I next have a merge conflict to be sure I give the right instructions
-td]

3.5.11 Other actions

The instructions above describe the simplest way of using git on Windows. Other git facilities
which may usefully supplement these include

e Using multiple local branches (Create, Rename, Delete)

Resetting branches

Cherry-picking commits

Pushing commits to remote/origin/master

Using gitk to review history

Once familiarity with using git on Windows has been gained the standard git manuals can
be used to learn about these.

Chapter 3: Working with source code

3.6 Repository directory structure

Prebuilt Documentation and packages are available from:
http://www.lilypond.org

LilyPond development is hosted at:
http://savannah.gnu.org/projects/lilypond

Here is a simple explanation of the directory layout for

LilyPond's source files.

Toplevel READMEs, Changelog,
build bootstrapping, patches
for third party programs

-- Documentation/ Top sources for manuals

I INDIVIDUAL CHAPTERS FOR EACH MANUAL:

| -- contributor/ Contributor's Guide

| -- essay/ Essay on automated music engraving
|-- extending/ Extending

|-- learning/ Learning Manual

| -— notation/ Notation Reference

|-- usage/ Usage

| -- web/ The website

I “-- ly-examples/ .ly files for the "Examples" page

I
I
I TRANSLATED MANUALS:

I Each language's directory can contain...

I 1) translated versions of:

I * top sources for manuals

| * individual chapters for each manual

I 2) a texidocs/ directory for snippet translations

|-- de/ German
|-- es/ Spanish
|-- fr/ French
|-- hu/ Hungarian
|-- it/ Italian
|-- ja/ Japanese
|-- nl/ Dutch

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I I MISCELLANEQUS DOC STUFF:
I

I

|-- css/ CSS files for HTML docs

Chapter 3: Working with source code

|-- included/
|-- logo/

| -— misc/

| -- pictures/
| ~-- pdf/

|-- po/

|-- snippets/
| “-- new/

-- topdocs/

C++ SOURCES:

flower/
lily/

LIBRARIES:

ly/
mf/
ps/
scm/
tex/

SCRIPTS:

python/

“—- auxiliar/
scripts/

|-- auxiliar/
*—- build/

BUILD PROCESS:

.1y files used in the manuals

Web logo and "note" icon

0ld announcements, Changelogs and NEWS
Images used (eps/jpg/png/svg)

(pdf)

Translated build/maintenance scripts
Auto-generated .ly snippets (from the LSR)
Snippets too new for the LSR

AUTHORS, INSTALL, README

A simple C++ library
C++ sources for the LilyPond binary

.1y \include files

MetaFont sources for Emmentaler fonts

PostScript library files

Scheme sources for LilyPond and subroutine files
TeX and texinfo library files

Python modules, MIDI module

Python modules for build/maintenance
End-user scripts (--> lilypond/usr/bin/)
Maintenance and non-essential build scripts
Essential build scripts

(also see SCRIPTS section above)

make/
stepmake/

REGRESSION TESTS:

input/

“-- regression/
|-- abc2ly/
“—-- musicxml/

MISCELLANEQUS:

Specific make subroutine files
Generic make subroutine files

.1y regression tests
.abc regression tests
.xml and .itexi regression tests

32

Chapter 3: Working with source code

|-- elisp/ Emacs LilyPond mode and syntax coloring
|-- vim/ Vi(M) LilyPond mode and syntax coloring
T-- po/

Translations for binaries and end-user scripts

3.7 Other Git documentation

e Official git man pages: http://www.kernel.org/pub/software/scm/git/docs/

e More in-depth tutorials: http://git-scm.com/documentation
e Book about git: Pro Git

33

http://www.kernel.org/pub/software/scm/git/docs/
http://git-scm.com/documentation
http://progit.org/

Chapter 4: Compiling 34

4 Compiling
This chapter describes the process of compiling the LilyPond program from source files.

4.1 Overview of compiling

Compiling LilyPond from source is an involved process, and is only recommended for developers
and packagers. Typical program users are instead encouraged to obtain the program from a
package manager (on Unix) or by downloading a precompiled binary configured for a specific
operating system. Pre-compiled binaries are available on the Section “Download” in General
Information page.

Compiling LilyPond from source is necessary if you want to build, install, or test your own
version of the program.

A successful compile can also be used to generate and install the documentation, incorpo-
rating any changes you may have made. However, a successful compile is not a requirement
for generating the documentation. The documentation can be built using a Git repository in
conjunction with a locally installed copy of the program. For more information, see [Building
documentation without compiling], page 41.

Attempts to compile LilyPond natively on Windows have been unsuccessful, though a
workaround is available (see Section “Lilydev” in Contributor’s Guide).

4.2 Requirements

4.2.1 Requirements for running LilyPond
Running LilyPond requires proper installation of the following software:
e DejaVu fonts (normally installed by default)
e FontConfig (2.4.0 or newer)
e Freetype (2.1.10 or newer)
e Ghostscript (8.60 or newer)
e Guile (1.8.2 or newer)
e Pango (1.12 or newer)

e Python (2.4 or newer)

International fonts are required to create music with international text or lyrics.

4.2.2 Requirements for compiling LilyPond

Below is a full list of packages needed to build LilyPond. However, for most common distributions
there is an easy way of installing most all build dependencies in one go:

Distribution Command

Debian, Ubuntu sudo apt-get build-dep lilypond
Fedora, RHEL sudo yum-builddep lilypond
openSUSE, SLED sudo zypper --build-deps-only

source-install lilypond
e Everything listed in Section 4.2.1 [Requirements for running LilyPond], page 34
e Development packages for the above items (which should include header files and libraries).
Red Hat Fedora:

http://www.dejavu-fonts.org/
http://www.fontconfig.org/
http://www.freetype.org/
http://www.ghostscript.com
http://www.gnu.org/software/guile/guile.html
http://www.pango.org/
http://www.python.org

Chapter 4: Compiling

4.2.3 Requirements for building documentation

guile-devel-version

fontconfig-devel-version
freetype-devel-version

pango-devel-version
python-devel-version

Debian GNU /Linux:

guile-version-dev

libfontconfigl-dev

libfreetype6-dev

libpangol.0-dev

pythonversion-dev
Flex

35

FontForge (20060125 or newer; 20100501 or newer is recommended; must be compiled with
‘-—enable-double’. Failure to do so can lead to poor intersection calculations and poorly-

rendered glyphs.)
GNU Bison

GNU Compiler Collection (3.4 or newer, 4.x recommended)

GNU gettext (0.17 or newer)
GNU Make (3.78 or newer)

MetaFont (mf-nowin, mf, mfw or mfont binaries), usually packaged with TEX.

MetaPost (mpost binary), usually packaged with TEX.

Perl

Texinfo (4.11 or newer)

Type 1 utilities (1.33 or newer recommended)

You can view the documentation online at http://www.lilypond.org/doc/, but you can also

build it locally. This process requires some additional tools and packages:

Everything listed in Section 4.2.2 [Requirements for compiling LilyPond], page 34

ImageMagick
Netpbm

gzip

rsync

Texi2HTML (1.82)
International fonts
Red Hat Fedora:

fonts-arabic
fonts-hebrew
fonts-ja
fonts-xorg-truetype
taipeifonts
ttfonts-ja
ttfonts-zh_CN

Debian GNU /Linux:

emacs—-intl-fonts
ttf-kochi-gothic

http://flex.sourceforge.net/
http://fontforge.sf.net/
http://www.gnu.org/software/bison/
http://gcc.gnu.org/
http://www.gnu.org/software/gettext/gettext.html
http://www.gnu.org/software/make/
http://metafont.tutorial.free.fr/
http://www.latex-project.org/ftp.html
http://cm.bell-labs.com/who/hobby/MetaPost.html
http://www.latex-project.org/ftp.html
http://www.perl.org/
http://www.gnu.org/software/texinfo/
http://www.lcdf.org/~eddietwo/type/#t1utils
http://www.lilypond.org/doc/
http://www.imagemagick.org/
http://netpbm.sourceforge.net/
http://gzip.org/
http://rsync.samba.org/
http://www.nongnu.org/texi2html/

Chapter 4: Compiling 36

ttf-kochi-mincho
xfonts-bolkhov-75dpi
xfonts-cronyx-75dpi
xfonts-cronyx-100dpi
xfonts-intl-.x*

4.3 Getting the source code

Downloading the Git repository

In general, developers compile LilyPond from within a local Git repository. Setting up a local
Git repository is explained in Section “Starting with Git” in Contributor’s Guide.

Downloading a source tarball

Packagers are encouraged to use source tarballs for compiling.

The tarball for the latest stable release is available on the Section “Source” in General
Information page.

The latest source code snapshot is also available as a tarball from the GNU Savannah Git server.

All tagged releases (including legacy stable versions and the most recent development release)
are available here:

http://download.linuxaudio.org/lilypond/source/
Download the tarball to your ‘~/src/’ directory, or some other appropriate place.

Note: Be careful where you unpack the tarballl Any subdirectories
of the current folder named ‘lilypond/’ or ‘lilypond-x.y.z/’ (where
x.y.z is the release number) will be overwritten if there is a name clash
with the tarball.

Unpack the tarball with this command:
tar -xzf lilypond-x.y.z.tar.gz

This creates a subdirectory within the current directory called ‘lilypond-x.y.z/’. Once
unpacked, the source files occupy about 40 MB of disk space.

Windows users wanting to look at the source code may have to download and install the
free-software 7zip archiver to extract the tarball.

4.4 Configuring make

4.4.1 Running ./autogen.sh

After you unpack the tarball (or download the Git repository), the contents of
your top source directory should be similar to the current source tree listed at
http://git.sv.gnu.org/gitweb/?p=1lilypond.git;a=tree.
Next, you need to create the generated files; enter the following command from your top
source directory:
./autogen.sh --noconfigure

This will generate a number of files and directories to aid configuration, such as ‘configure’,
‘README. txt’, etc.

Next, create the build directory with:

mkdir build/
cd build/

We heavily recommend building lilypond inside a separate directory with this method.

http://git.savannah.gnu.org/gitweb/?p=lilypond.git;a=snapshot
http://download.linuxaudio.org/lilypond/source/
http://www.7-zip.org
http://git.sv.gnu.org/gitweb/?p=lilypond.git;a=tree

Chapter 4: Compiling 37

4.4.2 Running ../configure

Configuration options

Note: make sure that you are in the ‘build/’ subdirectory of your source
tree.

The ../configure command (generated by ./autogen.sh) provides many options for con-
figuring make. To see them all, run:

../configure --help

Checking build dependencies

Note: make sure that you are in the ‘build/’ subdirectory of your source
tree.

When ../configure is run without any arguments, it will check to make sure your system
has everything required for compilation:

../configure
If any build dependency is missing, . ./configure will return with:
ERROR: Please install required programs: foo

The following message is issued if you are missing programs that are only needed for building
the documentation:

WARNING: Please consider installing optional programs: bar

If you intend to build the documentation locally, you will need to install or update these
programs accordingly.

Note: ../configure may fail to issue warnings for certain documenta-
tion build requirements that are not met. If you experience problems
when building the documentation, you may need to do a manual check
of Section 4.2.3 [Requirements for building documentation], page 35.

Configuring target directories

Note: make sure that you are in the ‘build/’ subdirectory of your source
tree.

If you intend to use your local build to install a local copy of the program, you will probably
want to configure the installation directory. Here are the relevant lines taken from the output
of ../configure --help:

By default, ‘make install’ will install all the files in ‘/usr/local/bin’,
‘/usr/local/lib’ etc. You can specify an installation prefix other than
‘/usr/local’ using ‘--prefix’, for instance ‘--prefix=$HOME’.

A typical installation prefix is ‘$HOME/usr’:

../configure --prefix=$HOME/usr

Note that if you plan to install a local build on a system where you do not have root priv-
ileges, you will need to do something like this anyway—make install will only succeed if the
installation prefix points to a directory where you have write permission (such as your home
directory). The installation directory will be automatically created if necessary.

Chapter 4: Compiling 38

The location of the lilypond command installed by this process will be ‘pre-
fix/bin/lilypond’; you may want to add ‘prefix/bin/’ to your $PATH if it is not already
included.

It is also possible to specify separate installation directories for different types of program
files. See the full output of ../configure --help for more information.

If you encounter any problems, please see Section 4.7 [Problems|, page 42.
4.5 Compiling LilyPond

4.5.1 Using make

Note: make sure that you are in the ‘build/’ subdirectory of your source
tree.

LilyPond is compiled with the make command. Assuming make is configured properly, you
can simply run:

make

‘make’ is short for ‘make all’. To view a list of make targets, run:
make help

TODO: Describe what make actually does.

4.5.2 Saving time with the ‘-j’ option

If your system has multiple CPUs, you can speed up compilation by adding ‘-jX’ to the make
command, where ‘X’ is one more than the number of cores you have. For example, a typical
Core2Duo machine would use:

make -j3
If you get errors using the ‘~j’ option, and ‘make’ succeeds without it, try lowering the X
value.

3)

Because multiple jobs run in parallel when ‘~j’ is used, it can be difficult to determine the
source of an error when one occurs. In that case, running ‘make’ without the ‘-j’ is advised.

4.5.3 Compiling for multiple platforms

If you want to build multiple versions of LilyPond with different configuration settings, you
can use the --enable-config=CONF option of configure. You should use make conf=CONF to
generate the output in ‘out-CONF’. For example, suppose you want to build with and without
profiling, then use the following for the normal build

./configure --prefix=$HOME/usr/ --enable-checking
make

and for the profiling version, specify a different configuration

./configure --prefix=$HOME/usr/ --enable-profiling \
--enable-config=prof --disable-checking
make conf=prof

If you wish to install a copy of the build with profiling, don’t forget to use conf=CONF when
issuing make install:

make conf=prof install

See also

Section 4.6.1 [Installing LilyPond from a local build|, page 39

Chapter 4: Compiling 39

4.5.4 Useful make variables

If a less verbose build output if desired, the variable QUIET_BUILD may be set to 1 on make
command line, or in ‘local.make’ at top of the build tree.

4.6 Post-compilation options

4.6.1 Installing LilyPond from a local build

If you configured make to install your local build in a directory where you normally have write
permission (such as your home directory), and you have compiled LilyPond by running make,
you can install the program in your target directory by running:

make install

If instead, your installation directory is not one that you can normally write to (such as
the default ‘/usr/local/’, which typically is only writeable by the superuser), you will need to
temporarily become the superuser when running make install:

sudo make install
or...
su -c¢ 'make install'

If you don’t have superuser privileges, then you need to configure the installation directory
to one that you can write to, and then re-install. See [Configuring target directories|, page 37.

4.6.2 Generating documentation

Documentation editor’s edit/compile cycle
e Initial documentation build:
make [-jX]
make [-jX CPU_COUNT=X] doc ## can take an hour or more
e Edit/compile cycle:

edit source files, then...

make [-jX] ## needed if editing outside
Documentation/, but useful anyway
for finding Texinfo errors.

touch Documentation/*te?? ## bug workaround

make [-jX CPU_COUNT=X] doc ## usually faster than initial build.

e Reset:

In some cases, it is possible to clean the compiled documentation with ‘make doc-clean’,
but this method is not guaranteed to fix everything. Instead, we recommend that you
delete your ‘build/’ directory, and begin compiling from scratch. Since the documentation
compile takes much longer than the non-documentation compile, this does not increase the
overall time by a great deal.

Building documentation
After a successful compile (using make), the documentation can be built by issuing:

make doc

The first time you run make doc, the process can easily take an hour or more. After that,
make doc only makes changes to the pre-built documentation where needed, so it may only take
a minute or two to test changes if the documentation is already built.

Chapter 4: Compiling 40

If make doc succeeds, the HTML documentation tree is available in
‘out-www/offline-root/’, and can be browsed locally. Various portions of the doc-
umentation can be found by looking in ‘out/’ and ‘out-www’ subdirectories in other places
in the source tree, but these are only portions of the docs. Please do not complain about
anything which is broken in those places; the only complete set of documentation is in
‘out-www/offline-root/’ from the top of the source tree.

Compilation of documentation in Info format with images can be done separately by issuing:

make info

Known issues and warnings

If source files have changed since the last documentation build, output files that need to be
rebuilt are normally rebuilt, even if you do not run make doc-clean first. However, build
dependencies in the documentation are so complex that some newly-edited files may not be
rebuilt as they should be; a workaround is to touch the top source file for any manual you’ve
edited. For example, if you make changes to a file in ‘notation/’, do:

touch Documentation/notation.tely
The top sources possibly affected by this are:

Documentation/extend.texi
Documentation/changes.tely
Documentation/contributor.texi
Documentation/essay.tely
Documentation/extending.tely
Documentation/learning.tely
Documentation/notation.tely
Documentation/snippets.tely
Documentation/usage.tely
Documentation/web.texi

You can touch all of them at once with:
touch Documentation/*te??

However, this will rebuild all of the manuals indiscriminately—it is more efficient to touch only
the affected files.

Saving time with CPU_COUNT

The most time consuming task for building the documentation is running LilyPond to build
images of music, and there cannot be several simultaneously running 1ilypond-book instances,
so the ‘-j’ make option does not significantly speed up the build process. To help speed it up,
the makefile variable ‘CPU_COUNT’ may be set in ‘local.make’ or on the command line to the
number of .1y files that LilyPond should process simultaneously, e.g. on a bi-processor or dual
core machine:

make -j3 CPU_COUNT=3 doc

The recommended value of ‘CPU_COUNT’ is one plus the number of cores or processors, but it is
advisable to set it to a smaller value unless your system has enough RAM to run that many
simultaneous LilyPond instances. Also, values for the ‘~j’ option that pose problems with ‘make’
are less likely to pose problems with ‘make doc’ (this applies to both ‘-j’ and ‘CPU_COUNT’). For
example, with a quad-core processor, it is possible for ‘make -j5 CPU_COUNT=5 doc’ to work
consistently even if ‘make -j5’ rarely succeeds.

AJAX search

To build the documentation with interactive searching, use:

Chapter 4: Compiling 41

make doc AJAX_SEARCH=1

This requires PHP, and you must view the docs via a http connection (you cannot view them
on your local filesystem).

Note: Due to potential security or load issues, this option is not enabled
in the official documentation builds. Enable at your own risk.

Installing documentation
The HTML, PDF and if available Info files can be installed into the standard documentation
path by issuing
make install-doc
This also installs Info documentation with images if the installation prefix is properly set; other-

wise, instructions to complete proper installation of Info documentation are printed on standard
output.

To install the Info documentation separately, run:
make install-info

Note that to get the images in Info documentation, install-doc target creates symbolic links
to HTML and PDF installed documentation tree in ‘prefix/share/info’, in order to save disk
space, whereas install-info copies images in ‘prefix/share/info’ subdirectories.

It is possible to build a documentation tree in ‘out-www/online-root/’, with special pro-
cessing, so it can be used on a website with content negotiation for automatic language selection;
this can be achieved by issuing

make WEB_TARGETS=online doc
and both ‘offline’ and ‘online’ targets can be generated by issuing
make WEB_TARGETS="offline online" doc

Several targets are available to clean the documentation build and help with maintaining
documentation; an overview of these targets is available with

make help
from every directory in the build tree. Most targets for documentation maintenance are available

from ‘Documentation/’; for more information, see Section “Documentation work” in Contribu-
tor’s Guide.

The makefile variable QUIET_BUILD may be set to 1 for a less verbose build output, just like
for building the programs.

Building documentation without compiling

The documentation can be built locally without compiling LilyPond binary, if LilyPond is already
installed on your system.
From a fresh Git checkout, do
./autogen.sh # ignore any warning messages
cp GNUmakefile.in GNUmakefile
make -C scripts && make -C python
nice make LILYPOND_EXTERNAL_BINARY=/path/to/bin/lilypond doc
Please note that this may break sometimes — for example, if a new feature is added with a
test file in input/regression, even the latest development release of LilyPond will fail to build
the docs.
You may build the manual without building all the ‘input/*’ stuff (i.e. mostly regression
tests): change directory, for example to ‘Documentation/’, issue make doc, which will build

Chapter 4: Compiling 42

documentation in a subdirectory ‘out-www’ from the source files in current directory. In this
case, if you also want to browse the documentation in its post-processed form, change back to
top directory and issue

make out=www WWW-post

Known issues and warnings
You may also need to create a script for pngtopnm and pnmtopng. On GNU /Linux, I use this:

export LD_LIBRARY_PATH=/usr/lib
exec /usr/bin/pngtopnm "$Q"

On MacOS X with fink, I use this:

export DYLD_LIBRARY_PATH=/sw/1lib
exec /sw/bin/pngtopnm "$e"

On MacOS X with macports, you should use this:

export DYLD_FALLBACK_LIBRARY_PATH=/opt/local/lib
exec /opt/local/bin/pngtopnm "$e"

4.6.3 Testing LilyPond binary

LilyPond comes with an extensive suite that exercises the entire program. This suite can be
used to test that the binary has been built correctly.

The test suite can be executed with:
make test
If the test suite completes successfully, the LilyPond binary has been verified.

More information on the regression test suite is found at Section “Regression tests” in Con-
tributor’s Guide.

4.7 Problems

For help and questions use 1lilypond-user@gnu.org. Send bug reports to
bug-lilypond@gnu.org.

Bugs that are not fault of LilyPond are documented here.

Bison 1.875

There is a bug in bison-1.875: compilation fails with "parse error before ‘goto’ in line 4922 due
to a bug in bison. To fix, please recompile bison 1.875 with the following fix

$ cd 1lily; make out/parser.cc
$ vi +4919 out/parser.cc

append a semicolon to the line containing "
save

$ make

_attribute__ ((__unused__))

Compiling on MacOS X

Here are special instructions for compiling under MacOS X. These instructions assume that
dependencies are installed using MacPorts. The instructions have been tested using OS X 10.5
(Leopard).

First, install the relevant dependencies using MacPorts.

Next, add the following to your relevant shell initialization files. This is ~/.profile by
default. You should create this file if it does not exist.

mailto:lilypond-user@gnu.org
mailto:bug-lilypond@gnu.org
http://www.macports.org/

Chapter 4: Compiling 43

export PATH=/opt/local/bin:/opt/local/sbin:$PATH
export DYLD_FALLBACK_LIBRARY_PATH=/opt/local/lib:$DYLD_FALLBACK_LIBRARY_PATH

Now you must edit the generated ‘config.make’ file. Change
FLEXLEXER_FILE = /usr/include/FlexLexer.h
to:
FLEXLEXER_FILE = /opt/local/include/FlexLexer.h

At this point, you should verify that you have the appropriate fonts installed with your
ghostscript installation. Check 1s /opt/local/share/ghostscript/fonts for: ’c0590* files
(.pfb, .pfb and .afm). If you don’t have them, run the following commands to grab them from
the ghostscript SVN server and install them in the appropriate location:

svn export http://svn.ghostscript.com/ghostscript/tags/urw-fonts-1.0.7pre44/
sudo mv urw-fonts-1.0.7pred44/* /opt/local/share/ghostscript/fonts/
rm -rf urw-fonts-1.07pred4

Now run the ./configure script. To avoid complications with automatic font detection, add

--with-ncsb-dir=/opt/local/share/ghostscript/fonts

Solaris

Solaris7, ./configure

‘./configure’ needs a POSIX compliant shell. On Solaris7, ‘/bin/sh’ is not yet POSIX
compliant, but ‘/bin/ksh’ or bash is. Run configure like

CONFIG_SHELL=/bin/ksh ksh -c ./configure
or

CONFIG_SHELL=/bin/bash bash -c ./configure

FreeBSD

To use system fonts, dejaview must be installed. With the default port, the fonts are installed
in ‘usr/X11R6/1ib/X11/fonts/dejavu’.

Open the file ‘6LILYPONDBASE/usr/etc/fonts/local.conf’ and add the following line just
after the <fontconfig> line. (Adjust as necessary for your hierarchy.)

<dir>/usr/X11R6/1ib/X11/fonts</dir>

International fonts

On Mac OS X, all fonts are installed by default. However, finding all system fonts requires a bit
of configuration; see this post on the 1ilypond-user mailing list.

On Linux, international fonts are installed by different means on every distribution. We
cannot list the exact commands or packages that are necessary, as each distribution is different,
and the exact package names within each distribution changes. Here are some hints, though:

Red Hat Fedora

taipeifonts fonts-xorg-truetype ttfonts-ja fonts-arabic \
ttfonts-zh_CN fonts-ja fonts-hebrew

Debian GNU/Linux
apt-get install emacs-intl-fonts xfonts-intl-.* \

ttf-kochi-gothic ttf-kochi-mincho \
xfonts-bolkhov-75dpi xfonts-cronyx-100dpi xfonts-cronyx-75dpi

http://lists.gnu.org/archive/html/lilypond-user/2007-03/msg00472.html

Chapter 4: Compiling 44

Using lilypond python libraries

If you want to use lilypond’s python libraries (either running certain build scripts manually,
or using them in other programs), set PYTHONPATH to ‘python/out’ in your build directory, or
‘.../usr/1lib/lilypond/current/python’ in the installation directory structure.

4.8 Concurrent stable and development versions

It can be useful to have both the stable and the development versions of Lilypond available at
once. One way to do this on GNU/Linux is to install the stable version using the precompiled
binary, and run the development version from the source tree. After running make all from
the top directory of the Lilypond source files, there will be a binary called 1ilypond in the out
directory:

<path to>/lilypond/out/bin/lilypond

This binary can be run without actually doing the make install command. The advantage
to this is that you can have all of the latest changes available after pulling from git and running
make all, without having to uninstall the old version and reinstall the new.

So, to use the stable version, install it as usual and use the normal commands:
lilypond foobar.ly

To use the development version, create a link to the binary in the source tree by saving the
following line in a file somewhere in your $PATH:

exec <path to>/lilypond/out/bin/lilypond "$@"

Save it as Lilypond (with a capital L to distinguish it from the stable 1ilypond), and make
it executable:

chmod +x Lilypond

Then you can invoke the development version this way:
Lilypond foobar.ly

TODO: ADD

- other compilation tricks for developers

4.9 Build system

We currently use make and stepmake, which is complicated and only used by us. Hopefully this
will change in the future.

Version-specific texinfo macros

e made with scripts/build/create-version-itexi.py and
scripts/build/create-weblinks-itexi.py

e used extensively in the WEBSITE_ONLY_BUILD version of the website (made with
‘website.make’, used on lilypond.org)

e not (?) used in the main docs?
e the numbers in VERSION file: MINOR_VERSION should be 1 more than the last release,

VERSION_DEVEL should be the last online release. Yes, VERSION_DEVEL is less than
VERSION.

Chapter 5: Documentation work 45

5 Documentation work

There are currently 11 manuals for LilyPond, not including the translations. Each book is
available in HTML, PDF, and info. The documentation is written in a language called texinfo
— this allows us to generate different output formats from a single set of source files.

To organize multiple authors working on the documentation, we use a Version Control System
(VCS) called git, previously discussed in Section 3.2 [Starting with Git], page 11.

5.1 Introduction to documentation work

Our documentation tries to adhere to our Section 5.4 [Documentation policy], page 54. This
policy contains a few items which may seem odd. One policy in particular is often questioned by
potential contributors: we do not repeat material in the Notation Reference, and instead provide
links to the “definitive” presentation of that information. Some people point out, with good
reason, that this makes the documentation harder to read. If we repeated certain information

in relevant places, readers would be less likely to miss that information.

That reasoning is sound, but we have two counter-arguments. First, the Notation Reference
— one of five manuals for users to read — is already over 500 pages long. If we repeated material,
we could easily exceed 1000 pages! Second, and much more importantly, LilyPond is an evolving
project. New features are added, bugs are fixed, and bugs are discovered and documented. If
features are discussed in multiple places, the documentation team must find every instance.
Since the manual is so large, it is impossible for one person to have the location of every piece
of information memorized, so any attempt to update the documentation will invariably omit a
few places. This second concern is not at all theoretical; the documentation used to be plagued
with inconsistent information.

If the documentation were targeted for a specific version — say, LilyPond 2.10.5 — and we
had unlimited resources to spend on documentation, then we could avoid this second problem.
But since LilyPond evolves (and that is a very good thing!), and since we have quite limited
resources, this policy remains in place.

A few other policies (such as not permitting the use of tweaks in the main portion of NR 1+2)
may also seem counter-intuitive, but they also stem from attempting to find the most effective
use of limited documentation help.

Before undertaking any large documentation work, contributors are encouraged to contact
the Section 13.2 [Meisters], page 128.

5.2 Documentation suggestions

Small additions

For additions to the documentation,
1. Tell us where the addition should be placed. Please include both the section number and
title (i.e. "LM 2.13 Printing lyrics").
2. Please write exact changes to the text.
3. A formal patch to the source code is not required; we can take care of the technical details.

4. Send the suggestions to the bug-1ilypond mailing list as discussed in Section “Contact” in
General Information.

5. Here is an example of a perfect documentation report:

To: bug-lilypond@gnu.org
From: helpful-user@example.net
Subject: doc addition

Chapter 5: Documentation work 46

In LM 2.13 (printing lyrics), above the last line ("More options,
like..."), please add:

To add lyrics to a divided part, use blah blah blah. For example,

\score {
\notes {blah <<blah>> }
\lyrics {blah <<blah>> }
blah blah blah

In addition, the second sentence of the first paragraph is
confusing. Please delete that sentence (it begins "Users
often...") and replace it with this:

To align lyrics with something, do this thing.

Have a nice day,
Helpful User

Larger contributions

To replace large sections of the documentation, the guidelines are stricter. We cannot remove
parts of the current documentation unless we are certain that the new version is an improvement.

1. Ask on the lilypond-devel mailing list if such a rewrite is necessary; somebody else might
already be working on this issue!

2. Split your work into small sections; this makes it much easier to compare the new and old
documentation.

3. Please prepare a formal git patch.

Once you have followed these guidelines, please send a message to lilypond-devel with your
documentation submissions. Unfortunately there is a strict “no top-posting” check on the mail-
ing list; to avoid this, add:

> I'm not top posting.

(you must include the >) to the top of your documentation addition.

We may edit your suggestion for spelling, grammar, or style, and we may not place the
material exactly where you suggested, but if you give us some material to work with, we can
improve the manual much faster. Thanks for your interest!

5.3 Texinfo introduction and usage policy

5.3.1 Texinfo introduction
The language is called Texinfo; you can see its manual here:
http://www.gnu.org/software/texinfo/manual/texinfo/

However, you don’t need to read those docs. The most important thing to notice is that
text is text. If you see a mistake in the text, you can fix it. If you want to change the order of
something, you can cut-and-paste that stuff into a new location.

http://www.gnu.org/software/texinfo/manual/texinfo/

Chapter 5: Documentation work 47

Note: Rule of thumb: follow the examples in the existing docs. You
can learn most of what you need to know from this; if you want to do
anything fancy, discuss it on 1ilypond-devel first.

5.3.2 Documentation files
All manuals live in ‘Documentation/’.

In particular, there are four user manuals, their respective master source files are
‘learning.tely’ (LM, Learning Manual), ‘notation.tely’ (NR, Notation Reference),
‘music-glossary.tely’ (MG, Music Glossary), and ‘lilypond-program’ (AU). Each chapter
is written in a separate file, ending in ‘.itely’ for files containing lilypond code, and ‘.itexi’
for files without lilypond code, located in a subdirectory associated to the manual (‘learning/’
for ‘learning.tely’, and so on); list the subdirectory of each manual to determine the filename
of the specific chapter you wish to modify.

Developer manuals live in ‘Documentation/’ too. Currently there is only one: the Contrib-
utor’s Guide ‘contrib-guide.texi’ you are reading.

Snippet files are part of documentation, and the Snippet List (SL) lives in ‘Documentation/’
just like the manuals. For information about how to modify the snippet files and SL, see
Chapter 7 [LSR work]|, page 74.

5.3.3 Sectioning commands
Most of the manual operates at the

@node Foo
@subsubsection Foo

level. Sections are created with

@node Foo
@subsection Foo

e Please leave two blank lines above a @node; this makes it easier to find sections in texinfo.

e Do not use any @ commands for a @node. They may be used for any @sub. .. sections or
headings however.
not:
@node @code{Foo} Bar
@subsection @code{Foo} Bar

but instead:
@node Foo Bar
@subsection @code{Foo} Bar

e If a heading is desired without creating a @node, please use the following:
@subheading Foo
e Sectioning commands (@node and @section) must not appear inside an @ignore. Separate
those commands with a space, ie @n ode.
Nodes must be included inside a

Omenu

* foo::

* bar::
@end menu

construct. These are easily constructed with automatic tools; see Section 5.6 [Scripts to ease
doc work], page 58.

Chapter 5: Documentation work 48

5.3.4 LilyPond formatting

e Most LilyPond examples throughout the documentation can be produced with:
@lilypond[verbatim,quote,relative=1]
or
@lilypond[verbatim,quote,relative=2]

If using any combination of \header{}, \score{} or \layout{} in your example, then
you must omit the relative variable and either use absolute entry mode or an explicit
\relative{} construction.

If using \book{} in your example then you must also omit the relative variable and
either use absolute entry mode or an explicit \relative{} construction. However, you
must also include the papersize=X variable, where X is a defined paper size from within
‘scm/paper.scm’. This is to avoid the default a4 paper size being used and leaving too
much unnecessary whitespace and potentially awkward page breaks in the PDFs.

The preferred papersizes are ab, a6 or a8landscape.
a8landscape works best for a single measure with a single title and/or single tagline:

@lilypond [papersize=a8landscape,verbatim]
\book {
\header {
title = "A scale in LilyPond"
}

\relative {
cdef
}

X
Q@end lilypond

and can also be used to easily show features that require page breaks (i.e. page numbers)
without taking large amounts of space within the documentation. Do not use the quote
option with this paper size.

ab or a6 paper sizes are best used for examples that have more than two measures of music
or require multiple staves (i.e. to illustrate cross-staff features, RH and LH parts etc.) and
where \book{} constructions are required or where a8landscape produces an example that
is too cramped. Depending on the example the quote option may need to be omitted.

In rare cases, other options may be used (or omitted), but ask first.
e Please avoid using extra spacing either after or within the @1ilypond parameters.

not: @lilypond [verbatim, quote, relative=1]
but instead: @lilypond[verbatim,quote,relative=1]

e Inspirational headwords are produced with:

@lilypondfile[quote,ragged-right,line-width=16\cm,staffsize=16]
{pitches-headword.ly}

e LSR snippets are linked with:

@lilypondfile[verbatim,lilyquote,ragged-right,texidoc,doctitle]
{filename.ly}

e Use two spaces for indentation in lilypond examples (no tabs).
e All engravers should have double-quotes around them:
\consists "Spans_arpeggio_engraver"

LilyPond does not strictly require this, but it is a useful convention to follow.

Chapter 5: Documentation work 49

e All context or layout object strings should be prefaced with #. Again, LilyPond does not
strictly require this, but it is helpful to get users accustomed to this scheme construct, i.e.
\set Staff.instrumentName = #"cello"

e Try to avoid using #' or #° within when describing context or layout properties outside of
an @example or @lilypond, unless the description explicitly requires it.

¢

i.e. “..setting the transparent property leaves the object where it is, but makes it invisi-

ble.”
e If possible, only write one bar per line.

e If you only have one bar per line, omit bar checks. If you must put more than one bar per
line (not recommended), then include bar checks.

e Tweaks should, if possible, also occur on their own line.

not: \override TextScript #'padding = #3 c1”"hi"
but instead: \override TextScript #'padding = #3
Cl’“llhill

excepted in Templates, where ‘doctitle’ may be omitted.

e Avoid long stretches of input code. Nobody is going to read them in print. Create small
examples. However, this does not mean it has be minimal.

e Specify durations for at least the first note of every bar.

e If possible, end with a complete bar.

e Comments should go on their own line, and be placed before the line(s) to which they refer.
e For clarity, always use { } marks even if they are not technically required; i.e.

not:

\context Voice \repeat unfold 2 \relative c' {
c2 d
}

but instead:
\context Voice {

\repeat unfold 2 {
\relative c' {

c2 d
}
}
}
e Add a space around { } marks; i.e.
not: \chordmode{c e g}

but instead: \chordmode { c e g }
e Use { } marks for additional \markup format commands; i.e.

not: c"\markup \tiny\sharp
but instead: c"\markup { \tiny \sharp }

e Remove any space around < > marks; i.e.
not: <ceg>4
but instead: <c e g>4

e Beam, slur and tie marks should begin immediately after the first note with beam and
phrase marks ending immediately after the last.

Chapter 5: Documentation work 50

a8\ (ais16[b cis(d] b) cis4” b' cis,\)

e If you want to work on an example outside of the manual (for easier/faster processing), use
this header:

\paper {
indent = O0\mm
line-width = 160\mm - 2.0 * 0.4\in
ragged-right = ##t
force-assignment = #""
line-width = #(- line-width (* mm 3.000000))

\layout {
}

You may not change any of these values. If you are making an example demonstrating
special \paper{} values, contact the Documentation Editor.

5.3.5 Text formatting

e Lines should be less than 72 characters long. (We personally recommend writing with 66-
char lines, but do not bother modifying existing material). Also see the recommendations
for fixed-width fonts in the Section 5.3.6 [Syntax survey]|, page 50.

e Do not use tabs.

e Do not use spaces at the beginning of a line (except in @example or @verbatim environ-
ments), and do not use more than a single space between words. ‘makeinfo’ copies the input
lines verbatim without removing those spaces.

e Use two spaces after a period.
e In examples of syntax, use @var{musicexpr} for a music expression.

e Don’t use @rinternals{} in the main text. If you’re tempted to do so, you're probably
getting too close to “talking through the code”. If you really want to refer to a context, use
@codeq{} in the main text and @rinternals{} in the @seealso.

5.3.6 Syntax survey

Comments

e Qc ... — single line comment. ‘@c NOTE:’ is a comment which should remain in the final
version. (gp only command ;)

e Qignore — multi-line comment:

Q@ignore
Q@end ignore
Cross references

Enter the exact @node mname of the target reference between the brackets
(eg. ‘Gref{Syntax survey}’). Do not split a cross-reference across two lines — this
causes the cross-reference to be rendered incorrectly in html documents.

e Qref{...} — link within current manual.

e Qrchanges{...} — link to Changes.

e Qrcontrib{...} — link to Contributor’s Guide.
e Qressay{...} — link to Engraving Essay.

Chapter 5: Documentation work 51

@rextend{...} — link to Extending LilyPond.
O@rglos{...} — link to the Music Glossary.
@rinternals{...} — link to the Internals Reference.
@rlearning{...} — link to Learning Manual.
@rlsr{...} — link to a Snippet section.
@rprogram{. ..} — link to Application Usage.
@ruser{...} — link to Notation Reference.

O@rwebq{...} — link to General Information.

External links

@email{...} — create a mailto: E-mail link.

OQuref{URL [, link text]} — link to an external url. Use within an @example ... Q@end
example.

Q@example

Quref{URL [, link text 1}

Q@end example

Fixed-width font

@code{...}, @samp{...} —

Use the @code{. ..} command when referring to individual language-specific tokens (key-
words, commands, engravers, scheme symbols, etc.) in the text. Ideally, a single
@code{. ..} block should fit within one line in the PDF output.

Use the @sampq{...} command when you have a short example of user input, unless it
constitutes an entire @item by itself, in which case @code{. ..} is preferable. Otherwise,
both should only be used when part of a larger sentence within a paragraph or @item. Do
not use @code{...} or @samp{. ..} inside an @example block, and do not use either as a
free-standing paragraph; use @example instead.

A single unindented line in the PDF has space for about 79 fixed-width characters (76
if indented). Within an @item there is space for about 75 fixed-width characters. Each
additional level of @itemize or @enumerate shortens the line by about 4 columns.

However, even short blocks of @code{. ..} and @samp{. ..} can run into the margin if the
Texinfo line-breaking algorithm gets confused. Additionally, blocks that are longer than
this may in fact print nicely; it all depends where the line breaks end up. If you compile
the docs yourself, check the PDF output to make sure the line breaks are satisfactory.

The Texinfo setting @allowcodebreaks is set to false in the manuals, so lines within
@codeq{...} or @samp{. ..} blocks will only break at spaces, not at hyphens or underscores.
If the block contains spaces, use @w{@code{. . .}} or @w{@samp{. . .}} to prevent unexpected
line breaks.

The Texinfo settings txicodequoteundirected and txicodequotebacktick are both set in
the manuals, so backticks (*) and apostrophes (') placed within blocks of @code, @example,
or @verbatim are not converted to left- and right-angled quotes (¢ ’) as they normally are
within the text, so the apostrophes in ‘@w{@code{\relative c''}} will display correctly.
However, these settings do not affect the PDF output for anything within a @samp block
(even if it includes a nested @code block), so entering ‘@w{@samp{\relative c''}} wrongly
produces ‘\relative ¢’’’ in PDF. Consequently, if you want to use a @sampf{. ..} block
which contains backticks or apostrophes, you should instead use ‘@q{@code{...}} (or
‘@q{@w{@code{...}}}’ if the block also contains spaces). Note that backslashes within
@q{...} blocks must be entered as ‘@bs{}’, so the example above would be coded as
‘@q{@w{@code{@bs{}relative c''}}}".

Chapter 5: Documentation work 52

e @command{...} — Use when referring to command-line commands within the text (eg.
‘@command{convert-1y}’). Do not use inside an @example block.

e Qexample — Use for examples of program code. Do not add extraneous indentation (i.e.
don’t start every line with whitespace). Use the following layout (notice the use of blank
lines). Omit the @noindent if the text following the example starts a new paragraph:

...text leading into the example...
Q@example
@end example

@noindent
continuation of the text...

Individual lines within an @example block should not exceed 74 characters; otherwise they
will run into the margin in the PDF output, and may get clipped. If an @example block
is part of an @item, individual lines in the @example block should not exceed 70 columns.
Each additional level of @itemize or @enumerate shortens the line by about 4 columns.

For long command line examples, if possible, use a trailing backslash to break up a single
line, indenting the next line with 2 spaces. If this isn’t feasible, use ‘@smallexample ...
Q@end smallexample’ instead, which uses a smaller fontsize. Use @example whenever possi-
ble, but if needed, @smallexample can fit up to 90 characters per line before running into the
PDF margin. Each additional level of @itemize or @enumerate shortens a @smallexample
line by about 5 columns.

e @file{...} — Use when referring to filenames and directories in the text. Do not use
inside an @example block.

e Goption{...} — Use when referring to command-line options in the text (eg.
‘@option{--format}’). Do not use inside an @example block.

e @verbatim — Prints the block exactly as it appears in the source file (including whitespace,
etc.). For program code examples, use @example instead. @verbatim uses the same format
as @example.

Individual lines within an @verbatim block should not exceed 74 characters; otherwise they
will run into the margin in the PDF output, and may get clipped. If an @verbatim block
is part of an @item, individual lines in the @verbatim block should not exceed 70 columns.
Each additional level of @itemize or @enumerate shortens the line by about 4 columns.

Indexing
e Qcindex ... — General index. Please add as many as you can. Don’t capitalize the first
word.
e @funindex ... — is for a \lilycommand.
Lists

e Qenumerate — Create an ordered list (with numbers). Always put ‘@item’ on its own line.
As an exception, if all the items in the list are short enough to fit on single lines, placing
them on the ‘@item’ lines is also permissible. ‘@item’ and ‘@end enumerate’ should always
be preceded by a blank line.

Q@enumerate

Qitem
A long multi-line item like this one must begin

Chapter 5: Documentation work 53

on a line of its own and all the other items in
the list must do so too.

Q@item
Even short ones

Q@end enumerate

Q@enumerate
@item Short item
@item Short item

@end enumerate

@itemize — Create an unordered list (with bullets). Use the same format as @enumerate.
Do not use ‘@itemize @bullet’.

Special characters

--, === — Create an en dash (-) or an em dash (—) in the text. To print two or three
literal hyphens in a row, wrap one of them in a @w{...} (eg. ‘-@w{-}-").

@@, @{, @} — Create an at-sign (@), a left curly bracket ({), or a right curly bracket (}).

@bs{} — Create a backslash within a @q{...}, @qq{...}, or @warning{. ..} block. This
is a custom LilyPond macro, not a builtin @-command in Texinfo. Texinfo would also allow
A\, but this breaks the PDF output.

@tie{} — Create a variable-width non-breaking space in the text (use ‘@w{ }’ for a single
fized-width non-breaking space). Variables or numbers which consist of a single character
(probably followed by a punctuation mark) should be tied properly, either to the previous
or the next word. Example: ‘The letter@tie{}@q{I} is skipped’

Miscellany

@notation{...} — refers to pieces of notation, e.g. ‘@notation{clef}’. Also use for
specific lyrics (‘the @notation{A - men} is centered’). Only use once per subsection per
term.

@q{...} — Single quotes. Used for ‘vague’ terms. To get a backslash (\), you must use
‘@bs{}’.

@qq{...} — Double quotes. Used for actual quotes (“he said”) or for introducing special
input modes. To get a backslash (\), you must use ‘@bs{}’.

@var{. ..} — Use for metasyntactic variables (such as foo, bar, argl, etc.). In most cases,
when the @var{. ..} command appears in the text (and not in an @example block) it should
be wrapped with an appropriate texinfo code-highlighting command (such as @code, @samp,
@file, @command, etc.). For example: ‘@code{@var{foo}}’, ‘@file{@var{myfile.ly}}’,
‘@samp{git checkout @var{branch}}’, etc. This improves readability in the PDF and
HTML output.

@version{} — Return the current LilyPond version string. Use ‘@w{@version{}}’ if it’s
at the end of a line (to prevent an ugly line break in PDF); use ‘@w{"@version{}"}’ if you
need it in quotes.

@w{...} — Do not allow any line breaks.

@warning{. ..} — produces a “Note: ” box. Use for important messages. To get a backslash
(\), you must use ‘@bs{}’.

Chapter 5: Documentation work 54

5.3.7 Other text concerns

e References must occur at the end of a sentence, for more information see the texinfo manual.
Ideally this should also be the final sentence of a paragraph, but this is not required. Any
link in a doc section must be duplicated in the @seealso section at the bottom.

e Introducing examples must be done with

(i.e. finish the previous sentence/paragraph)
(i.e. “in this example:')
, (i.e. "may add foo with the blah construct,')

The old “sentence runs directly into the example” method is not allowed any more.
e Abbrevs in caps, e.g., HTML, DVI, MIDI, etc.
e Colon usage
1. To introduce lists
2. When beginning a quote: “So, he said,...”.
This usage is rarer. Americans often just use a comma.
3. When adding a defining example at the end of a sentence.

e Non-ASCII characters which are in utf-8 should be directly used; this is, don’t say
‘Ba@ss{}tuba’ but ‘BafSituba’. This ensures that all such characters appear in all output
formats.

5.4 Documentation policy

5.4.1 Books

There are four parts to the documentation: the Learning Manual, the Notation Reference, the
Program Reference, and the Music Glossary.

e Learning Manual:

The LM is written in a tutorial style which introduces the most important concepts, struc-
ture and syntax of the elements of a LilyPond score in a carefully graded sequence of steps.
Explanations of all musical concepts used in the Manual can be found in the Music Glos-
sary, and readers are assumed to have no prior knowledge of LilyPond. The objective is to
take readers to a level where the Notation Reference can be understood and employed to
both adapt the templates in the Appendix to their needs and to begin to construct their
own scores. Commonly used tweaks are introduced and explained. Examples are provided
throughout which, while being focussed on the topic being introduced, are long enough
to seem real in order to retain the readers’ interest. Each example builds on the previous
material, and comments are used liberally. Every new aspect is thoroughly explained before
it is used.

Users are encouraged to read the complete Learning Manual from start-to-finish.

e Notation Reference: a (hopefully complete) description of LilyPond input notation. Some
material from here may be duplicated in the Learning Manual (for teaching), but consider
the NR to be the "definitive" description of each notation element, with the LM being an
"extra". The goal is _not_ to provide a step-by-step learning environment — do not avoid
using notation that has not be introduced previously in the NR (for example, use \break if
appropriate). This section is written in formal technical writing style.

Avoid duplication. Although users are not expected to read this manual from start to fin-
ish, they should be familiar with the material in the Learning Manual (particularly “Fun-
damental Concepts”), so do not repeat that material in each section of this book. Also
watch out for common constructs, like ~ - _ for directions — those are explained in NR 3.

http://www.gnu.org/software/texinfo/manual/texinfo/

Chapter 5: Documentation work 55

In NR 1, you can write: DYNAMICS may be manually placed above or below the staff, see
@ref{Controlling direction and placement}.

Most tweaks should be added to LSR and not placed directly in the ‘.itely’ file. In some
cases, tweaks may be placed in the main text, but ask about this first.

Finally, you should assume that users know what the notation means; explaining musical
concepts happens in the Music Glossary.

e Application Usage: information about using the program lilypond with other programs
(lilypond-book, operating systems, GUIs, convert-ly, etc). This section is written in formal
technical writing style.

Users are not expected to read this manual from start to finish.

e Music Glossary: information about the music notation itself. Explanations and translations
about notation terms go here.

Users are not expected to read this manual from start to finish.

e Internals Reference: not really a documentation book, since it is automagically generated
from the source, but this is its name.

5.4.2 Section organization
e The order of headings inside documentation sections should be:

main docs
Opredefined
Q@en